Predicting acute toxicity of pesticides towards Daphnia magna with random forest algorithm.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
S Xu
{"title":"Predicting acute toxicity of pesticides towards <i>Daphnia magna</i> with random forest algorithm.","authors":"S Xu","doi":"10.1080/1062936X.2025.2478510","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of pesticides are released into the environment, resulting in serious threat for aquatic organisms. In this work, 15 quantum chemical descriptors were used to develop a quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for toxicity pEC<sub>50</sub> of 745 pesticides towards <i>Daphnia magna</i>, by using random forest algorithm. The optimal QSTR model in this paper yielded a coefficient of determination of 0.828, root-mean-square error of 0.798, and mean absolute error of 0.628 for the test set of 149 pesticides, which are accurate values compared with those of QSTR models published recently. Research has revealed that increasing molecular size (or molar volume), the most positive atomic Mulliken (or APT) charge with hydrogens summed into heavy, and the highest occupied molecular orbital (HOMO) energy, can result in higher toxicity pEC<sub>50</sub>. Increasing the lowest unoccupied molecular orbital (LUMO) energy and the HOMO and LUMO energy gap can lead to lower toxicity pEC<sub>50</sub>.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"36 3","pages":"189-203"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2478510","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A large number of pesticides are released into the environment, resulting in serious threat for aquatic organisms. In this work, 15 quantum chemical descriptors were used to develop a quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for toxicity pEC50 of 745 pesticides towards Daphnia magna, by using random forest algorithm. The optimal QSTR model in this paper yielded a coefficient of determination of 0.828, root-mean-square error of 0.798, and mean absolute error of 0.628 for the test set of 149 pesticides, which are accurate values compared with those of QSTR models published recently. Research has revealed that increasing molecular size (or molar volume), the most positive atomic Mulliken (or APT) charge with hydrogens summed into heavy, and the highest occupied molecular orbital (HOMO) energy, can result in higher toxicity pEC50. Increasing the lowest unoccupied molecular orbital (LUMO) energy and the HOMO and LUMO energy gap can lead to lower toxicity pEC50.

随机森林算法预测农药对大水蚤的急性毒性。
大量农药被释放到环境中,对水生生物造成严重威胁。本文利用15个量子化学描述符,利用随机森林算法建立了745种农药对大水蚤毒性pEC50的定量构效毒性关系(QSAR/QSTR)模型。本文所建立的最优QSTR模型对149种农药的检验集的决定系数为0.828,均方根误差为0.798,平均绝对误差为0.628,与近期发表的QSTR模型相比具有较高的准确性。研究表明,增加分子大小(或摩尔体积),将带氢原子的最正电荷(或APT)求和为重电荷,以及最高的已占据分子轨道(HOMO)能量,可以导致更高的毒性pEC50。增加最低未占据分子轨道(LUMO)能量以及HOMO和LUMO的能隙可以降低pEC50的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信