Young Seop Lee, Young Jae Kim, Jeong Won Ryu, Su Yeol Lee, Kwang Gi Kim
{"title":"Automated Neonatal Hip Ultrasound System for Diagnosing Developmental Dysplasia of Hips Using Assistive AI.","authors":"Young Seop Lee, Young Jae Kim, Jeong Won Ryu, Su Yeol Lee, Kwang Gi Kim","doi":"10.1007/s10278-025-01498-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop and evaluate an artificial intelligence (AI)-based diagnostic system for the diagnosis of developmental dysplasia of the hip (DDH) in infant hip ultrasonography. The Graf algorithm was employed to develop an automated model for diagnosing DDH, resulting in a DDH-assisted AI model with an average Graf angle error rate of 0.21 compared to expert diagnostics. NASNetMobile achieved the highest Area Under the Curve (AUC) of 0.864 (95% CI, 0.850-0.878), closely followed by MobileNetV1, DenseNet121, EfficientNetV2B0, NASNetMobile, and ResNet50. UnestedUNet demonstrated the highest overall performance, achieving Dice coefficients of 0.794 and a runtime of 40.078 ms, demonstrating its strong segmentation accuracy with moderate computational demands. DeepLabV3Plus, a handheld ultrasound device integrated with a smartphone, demonstrated a robust and efficient segmentation performance. This study highlights the transformative potential of integrating AI into portable ultrasound devices, enabling accurate, efficient, and accessible diagnostic solutions.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01498-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop and evaluate an artificial intelligence (AI)-based diagnostic system for the diagnosis of developmental dysplasia of the hip (DDH) in infant hip ultrasonography. The Graf algorithm was employed to develop an automated model for diagnosing DDH, resulting in a DDH-assisted AI model with an average Graf angle error rate of 0.21 compared to expert diagnostics. NASNetMobile achieved the highest Area Under the Curve (AUC) of 0.864 (95% CI, 0.850-0.878), closely followed by MobileNetV1, DenseNet121, EfficientNetV2B0, NASNetMobile, and ResNet50. UnestedUNet demonstrated the highest overall performance, achieving Dice coefficients of 0.794 and a runtime of 40.078 ms, demonstrating its strong segmentation accuracy with moderate computational demands. DeepLabV3Plus, a handheld ultrasound device integrated with a smartphone, demonstrated a robust and efficient segmentation performance. This study highlights the transformative potential of integrating AI into portable ultrasound devices, enabling accurate, efficient, and accessible diagnostic solutions.