Automated Neonatal Hip Ultrasound System for Diagnosing Developmental Dysplasia of Hips Using Assistive AI.

Young Seop Lee, Young Jae Kim, Jeong Won Ryu, Su Yeol Lee, Kwang Gi Kim
{"title":"Automated Neonatal Hip Ultrasound System for Diagnosing Developmental Dysplasia of Hips Using Assistive AI.","authors":"Young Seop Lee, Young Jae Kim, Jeong Won Ryu, Su Yeol Lee, Kwang Gi Kim","doi":"10.1007/s10278-025-01498-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop and evaluate an artificial intelligence (AI)-based diagnostic system for the diagnosis of developmental dysplasia of the hip (DDH) in infant hip ultrasonography. The Graf algorithm was employed to develop an automated model for diagnosing DDH, resulting in a DDH-assisted AI model with an average Graf angle error rate of 0.21 compared to expert diagnostics. NASNetMobile achieved the highest Area Under the Curve (AUC) of 0.864 (95% CI, 0.850-0.878), closely followed by MobileNetV1, DenseNet121, EfficientNetV2B0, NASNetMobile, and ResNet50. UnestedUNet demonstrated the highest overall performance, achieving Dice coefficients of 0.794 and a runtime of 40.078 ms, demonstrating its strong segmentation accuracy with moderate computational demands. DeepLabV3Plus, a handheld ultrasound device integrated with a smartphone, demonstrated a robust and efficient segmentation performance. This study highlights the transformative potential of integrating AI into portable ultrasound devices, enabling accurate, efficient, and accessible diagnostic solutions.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01498-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop and evaluate an artificial intelligence (AI)-based diagnostic system for the diagnosis of developmental dysplasia of the hip (DDH) in infant hip ultrasonography. The Graf algorithm was employed to develop an automated model for diagnosing DDH, resulting in a DDH-assisted AI model with an average Graf angle error rate of 0.21 compared to expert diagnostics. NASNetMobile achieved the highest Area Under the Curve (AUC) of 0.864 (95% CI, 0.850-0.878), closely followed by MobileNetV1, DenseNet121, EfficientNetV2B0, NASNetMobile, and ResNet50. UnestedUNet demonstrated the highest overall performance, achieving Dice coefficients of 0.794 and a runtime of 40.078 ms, demonstrating its strong segmentation accuracy with moderate computational demands. DeepLabV3Plus, a handheld ultrasound device integrated with a smartphone, demonstrated a robust and efficient segmentation performance. This study highlights the transformative potential of integrating AI into portable ultrasound devices, enabling accurate, efficient, and accessible diagnostic solutions.

使用辅助人工智能诊断髋关节发育不良的自动新生儿髋关节超声系统。
本研究旨在开发和评估一种基于人工智能(AI)的婴儿髋关节超声诊断系统,用于诊断髋关节发育不良(DDH)。利用Graf算法开发DDH自动诊断模型,与专家诊断相比,DDH辅助人工智能模型的平均Graf角错误率为0.21。NASNetMobile的曲线下面积(AUC)最高,为0.864 (95% CI, 0.850-0.878),紧随其后的是MobileNetV1、DenseNet121、EfficientNetV2B0、NASNetMobile和ResNet50。UnestedUNet表现出最高的整体性能,实现了0.794的Dice系数和40.078 ms的运行时间,证明了其强大的分割精度和适度的计算需求。DeepLabV3Plus是一款与智能手机集成的手持式超声设备,具有强大而高效的分割性能。这项研究强调了将人工智能集成到便携式超声设备中的变革潜力,从而实现准确、高效和可获取的诊断解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信