{"title":"Low-Rank, High-Order Tensor Completion via t- Product-Induced Tucker (tTucker) Decomposition","authors":"Yaodong Li;Jun Tan;Peilin Yang;Guoxu Zhou;Qibin Zhao","doi":"10.1162/neco_a_01756","DOIUrl":null,"url":null,"abstract":"Recently, tensor singular value decomposition (t-SVD)–based methods were proposed to solve the low-rank tensor completion (LRTC) problem, which has achieved unprecedented success on image and video inpainting tasks. The t-SVD is limited to process third-order tensors. When faced with higher-order tensors, it reshapes them into third-order tensors, leading to the destruction of interdimensional correlations. To address this limitation, this letter introduces a tproductinduced Tucker decomposition (tTucker) model that replaces the mode product in Tucker decomposition with t-product, which jointly extends the ideas of t-SVD and high-order SVD. This letter defines the rank of the tTucker decomposition and presents an LRTC model that minimizes the induced Schatten-p norm. An efficient alternating direction multiplier method (ADMM) algorithm is developed to optimize the proposed LRTC model, and its effectiveness is demonstrated through experiments conducted on both synthetic and real data sets, showcasing excellent performance.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 6","pages":"1171-1192"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11009211/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, tensor singular value decomposition (t-SVD)–based methods were proposed to solve the low-rank tensor completion (LRTC) problem, which has achieved unprecedented success on image and video inpainting tasks. The t-SVD is limited to process third-order tensors. When faced with higher-order tensors, it reshapes them into third-order tensors, leading to the destruction of interdimensional correlations. To address this limitation, this letter introduces a tproductinduced Tucker decomposition (tTucker) model that replaces the mode product in Tucker decomposition with t-product, which jointly extends the ideas of t-SVD and high-order SVD. This letter defines the rank of the tTucker decomposition and presents an LRTC model that minimizes the induced Schatten-p norm. An efficient alternating direction multiplier method (ADMM) algorithm is developed to optimize the proposed LRTC model, and its effectiveness is demonstrated through experiments conducted on both synthetic and real data sets, showcasing excellent performance.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.