Zhifeng Chen, Da Wo, Celiang Wu, En Ma, Jinhui Peng, Weidong Zhu, Dan-Ni Ren
{"title":"Paclitaxel alleviates spinal cord injury via activation of the Wnt/β-catenin signaling pathway.","authors":"Zhifeng Chen, Da Wo, Celiang Wu, En Ma, Jinhui Peng, Weidong Zhu, Dan-Ni Ren","doi":"10.1186/s10020-025-01240-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal cord injury (SCI) is a disability that causes severe traumatic damage to the central nervous system, with increasing prevalence worldwide. Paclitaxel (PTX) is a naturally occurring plant metabolite that has been shown to exhibit various neuroprotective effects in the central nervous system, however, the specific mechanisms underlying its protective effects in SCI remain unclear. In this study, we aimed to explore the therapeutic effects of PTX in SCI, as well as elucidate the underlying molecular mechanisms associated with its neuroprotective potential.</p><p><strong>Methods: </strong>Murine models of spinal cord compression were performed followed by intrathecal administration of corresponding agents for 21 days. Mice were randomly divided into the following four groups: Sham, SCI + Saline, SCI + PTX, and SCI + PTX + XAV939. Recovery of lower limb function and strength, as well as muscular atrophy were examined via multiple scored tests. Degree of neuronal and axonal damage, as well as fibrosis were examined via immunohistochemical staining.</p><p><strong>Results: </strong>PTX administration significantly improved the recovery of lower limb function and strength, prevented muscular atrophy, as well as decreased the extent of neuronal and axonal death following SCI surgery. PTX also robustly activated the Wnt/β-catenin protein signaling pathway that played a key role in its therapeutic effects. Co-administration with a Wnt/β-catenin pathway inhibitor - XAV939, significantly abolished the beneficial effects of PTX after SCI.</p><p><strong>Conclusion: </strong>This study provides important new mechanistic insight on the beneficial effects of PTX in protecting against spinal cord injury, as well as the experimental basis for its potential therapeutic use.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"172"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01240-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Spinal cord injury (SCI) is a disability that causes severe traumatic damage to the central nervous system, with increasing prevalence worldwide. Paclitaxel (PTX) is a naturally occurring plant metabolite that has been shown to exhibit various neuroprotective effects in the central nervous system, however, the specific mechanisms underlying its protective effects in SCI remain unclear. In this study, we aimed to explore the therapeutic effects of PTX in SCI, as well as elucidate the underlying molecular mechanisms associated with its neuroprotective potential.
Methods: Murine models of spinal cord compression were performed followed by intrathecal administration of corresponding agents for 21 days. Mice were randomly divided into the following four groups: Sham, SCI + Saline, SCI + PTX, and SCI + PTX + XAV939. Recovery of lower limb function and strength, as well as muscular atrophy were examined via multiple scored tests. Degree of neuronal and axonal damage, as well as fibrosis were examined via immunohistochemical staining.
Results: PTX administration significantly improved the recovery of lower limb function and strength, prevented muscular atrophy, as well as decreased the extent of neuronal and axonal death following SCI surgery. PTX also robustly activated the Wnt/β-catenin protein signaling pathway that played a key role in its therapeutic effects. Co-administration with a Wnt/β-catenin pathway inhibitor - XAV939, significantly abolished the beneficial effects of PTX after SCI.
Conclusion: This study provides important new mechanistic insight on the beneficial effects of PTX in protecting against spinal cord injury, as well as the experimental basis for its potential therapeutic use.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.