Monitoring Substance Use with Fitbit Biosignals: A Case Study on Training Deep Learning Models Using Ecological Momentary Assessments and Passive Sensing.

IF 3.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
AI (Basel, Switzerland) Pub Date : 2024-12-01 Epub Date: 2024-12-03 DOI:10.3390/ai5040131
Shizhe Li, Chunzhi Fan, Ali Kargarandehkordi, Yinan Sun, Christopher Slade, Aditi Jaiswal, Roberto M Benzo, Kristina T Phillips, Peter Washington
{"title":"Monitoring Substance Use with Fitbit Biosignals: A Case Study on Training Deep Learning Models Using Ecological Momentary Assessments and Passive Sensing.","authors":"Shizhe Li, Chunzhi Fan, Ali Kargarandehkordi, Yinan Sun, Christopher Slade, Aditi Jaiswal, Roberto M Benzo, Kristina T Phillips, Peter Washington","doi":"10.3390/ai5040131","DOIUrl":null,"url":null,"abstract":"<p><p>Substance use disorders affect 17.3% of Americans. Digital health solutions that use machine learning to detect substance use from wearable biosignal data can eventually pave the way for real-time digital interventions. However, difficulties in addressing severe between-subject data heterogeneity have hampered the adaptation of machine learning approaches for substance use detection, necessitating more robust technological solutions. We tested the utility of personalized machine learning using participant-specific convolutional neural networks (CNNs) enhanced with self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from 9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional supervised learning and an experimental SSL-enhanced model to improve individualized feature extraction under limited label conditions. Results: Among the 9 participants, we achieved an average area under the receiver operating characteristic curve score across participants of 0.695 for the supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled us to optimize either sensitivity or specificity while maintaining reasonable performance for the other metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance use monitoring systems. However, the small sample size in this study limits its generalizability to diverse populations, so we call for future research that explores SSL-powered personalization at a larger scale.</p>","PeriodicalId":93633,"journal":{"name":"AI (Basel, Switzerland)","volume":"5 4","pages":"2725-2738"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5040131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Substance use disorders affect 17.3% of Americans. Digital health solutions that use machine learning to detect substance use from wearable biosignal data can eventually pave the way for real-time digital interventions. However, difficulties in addressing severe between-subject data heterogeneity have hampered the adaptation of machine learning approaches for substance use detection, necessitating more robust technological solutions. We tested the utility of personalized machine learning using participant-specific convolutional neural networks (CNNs) enhanced with self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from 9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional supervised learning and an experimental SSL-enhanced model to improve individualized feature extraction under limited label conditions. Results: Among the 9 participants, we achieved an average area under the receiver operating characteristic curve score across participants of 0.695 for the supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled us to optimize either sensitivity or specificity while maintaining reasonable performance for the other metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance use monitoring systems. However, the small sample size in this study limits its generalizability to diverse populations, so we call for future research that explores SSL-powered personalization at a larger scale.

使用Fitbit生物信号监测物质使用:使用生态瞬时评估和被动感知训练深度学习模型的案例研究。
物质使用障碍影响了17.3%的美国人。利用机器学习从可穿戴生物信号数据中检测物质使用情况的数字健康解决方案最终可以为实时数字干预铺平道路。然而,在处理受试者之间严重的数据异质性方面的困难阻碍了机器学习方法对物质使用检测的适应,需要更强大的技术解决方案。我们使用自我监督学习(SSL)增强的参与者特定卷积神经网络(cnn)来检测药物使用,测试了个性化机器学习的效用。在一项试点可行性研究中,我们使用Fitbit Charge 5设备收集了9名参与者的数据,并辅以生态瞬间评估来收集物质使用的实时标签。我们实现了一个具有传统监督学习的基线1D-CNN模型和一个实验性ssl增强模型,以改善有限标签条件下的个性化特征提取。结果:在9个参与者中,我们实现了监督cnn和SSL模型的参与者的接收者工作特征曲线下的平均面积分别为0.695和0.729。最佳阈值的战略选择使我们能够优化灵敏度或特异性,同时保持其他指标的合理性能。结论:这些发现表明,Fitbit数据有潜力加强物质使用监测系统。然而,本研究中的小样本量限制了其对不同人群的普遍性,因此我们呼吁未来的研究在更大的范围内探索ssl驱动的个性化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信