Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.

IF 3.3 2区 医学 Q2 ONCOLOGY
Yuling Huang, Mingming Luo, Zan Luo, Mingzhi Liu, Junyu Li, Junming Jian, Yun Zhang
{"title":"Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.","authors":"Yuling Huang, Mingming Luo, Zan Luo, Mingzhi Liu, Junyu Li, Junming Jian, Yun Zhang","doi":"10.1186/s13014-025-02642-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of four-dimensional (4D) computed tomography (CT), which leads to indirect results. This study proposed a DL-based method for automatic IGTV delineation using maximum and average intensity projections (MIP and AIP, respectively) from 4D CT.</p><p><strong>Methods: </strong>We retrospectively enrolled 124 patients with NSCLC and divided them into training (70%, n = 87) and validation (30%, n = 37) cohorts. Four-dimensional CT images were acquired, and the corresponding MIP and AIP images were generated. The IGTVs were contoured on 4D CT and used as the ground truth (GT). The MIP or AIP images, along with the corresponding IGTVs (IGTV<sub>MIP-manu</sub> and IGTV<sub>AIP-manu</sub>, respectively), were fed into the DL models for training and validation. We assessed the performance of three segmentation models-U-net, attention U-net, and V-net-using the Dice similarity coefficient (DSC) and the 95th percentile of the Hausdorff distance (HD95) as the primary metrics.</p><p><strong>Results: </strong>The attention U-net model trained on AIP images presented a mean DSC of 0.871 ± 0.048 and mean HD95 of 2.958 ± 2.266 mm, whereas the model trained on MIP images achieved a mean DSC of 0.852 ± 0.053 and mean HD95 of 3.209 ± 2.136 mm. Among the models, attention U-net and U-net achieved similar results, considerably surpassing V-net.</p><p><strong>Conclusions: </strong>DL models can automate IGTV delineation using MIP and AIP images, streamline contouring, and enhance the accuracy and consistency of lung cancer radiotherapy planning to improve patient outcomes.</p>","PeriodicalId":49639,"journal":{"name":"Radiation Oncology","volume":"20 1","pages":"59"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13014-025-02642-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of four-dimensional (4D) computed tomography (CT), which leads to indirect results. This study proposed a DL-based method for automatic IGTV delineation using maximum and average intensity projections (MIP and AIP, respectively) from 4D CT.

Methods: We retrospectively enrolled 124 patients with NSCLC and divided them into training (70%, n = 87) and validation (30%, n = 37) cohorts. Four-dimensional CT images were acquired, and the corresponding MIP and AIP images were generated. The IGTVs were contoured on 4D CT and used as the ground truth (GT). The MIP or AIP images, along with the corresponding IGTVs (IGTVMIP-manu and IGTVAIP-manu, respectively), were fed into the DL models for training and validation. We assessed the performance of three segmentation models-U-net, attention U-net, and V-net-using the Dice similarity coefficient (DSC) and the 95th percentile of the Hausdorff distance (HD95) as the primary metrics.

Results: The attention U-net model trained on AIP images presented a mean DSC of 0.871 ± 0.048 and mean HD95 of 2.958 ± 2.266 mm, whereas the model trained on MIP images achieved a mean DSC of 0.852 ± 0.053 and mean HD95 of 3.209 ± 2.136 mm. Among the models, attention U-net and U-net achieved similar results, considerably surpassing V-net.

Conclusions: DL models can automate IGTV delineation using MIP and AIP images, streamline contouring, and enhance the accuracy and consistency of lung cancer radiotherapy planning to improve patient outcomes.

Abstract Image

Abstract Image

智能轮廓:使用4D CT最大和平均强度投影深度学习驱动的非小细胞肺癌内部大体肿瘤体积描绘。
背景:圈定肿瘤内部总体积(IGTV)对于非小细胞肺癌(NSCLC)的治疗至关重要。深度学习(DL)实现了这一过程的自动化;然而,目前的研究主要集中在四维计算机断层扫描(CT)的多个阶段,导致间接结果。本研究提出了一种基于dl的方法,利用4D CT的最大和平均强度投影(分别为MIP和AIP)自动圈定IGTV。方法:回顾性纳入124例非小细胞肺癌患者,并将其分为训练组(70%,n = 87)和验证组(30%,n = 37)。获取四维CT图像,生成相应的MIP和AIP图像。igtv在4D CT上进行等高线绘制,并作为ground truth (GT)。MIP或AIP图像以及相应的igtv(分别为IGTVMIP-manu和IGTVAIP-manu)被输入到DL模型中进行训练和验证。我们使用Dice相似系数(DSC)和Hausdorff距离的第95百分位(HD95)作为主要指标评估了三种分割模型-U-net,注意力U-net和v -net的性能。结果:在AIP图像上训练的注意力U-net模型的平均DSC为0.871±0.048,平均HD95为2.958±2.266 mm;在MIP图像上训练的注意力U-net模型的平均DSC为0.852±0.053,平均HD95为3.209±2.136 mm。在这些模型中,注意力U-net和U-net得到了相似的结果,大大超过了V-net。结论:深度学习模型可以使用MIP和AIP图像自动描绘IGTV,简化轮廓,提高肺癌放疗计划的准确性和一致性,从而改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Oncology
Radiation Oncology ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
6.50
自引率
2.80%
发文量
181
审稿时长
3-6 weeks
期刊介绍: Radiation Oncology encompasses all aspects of research that impacts on the treatment of cancer using radiation. It publishes findings in molecular and cellular radiation biology, radiation physics, radiation technology, and clinical oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信