Brent S. Kendrick , Krishnan Sampathkumar , John P. Gabrielson , Da Ren
{"title":"Analytical control strategy for biologics. Part I: Foundations","authors":"Brent S. Kendrick , Krishnan Sampathkumar , John P. Gabrielson , Da Ren","doi":"10.1016/j.xphs.2025.103826","DOIUrl":null,"url":null,"abstract":"<div><div>Biologic therapeutics encompass different modalities with vastly different molecular profiles. Despite these differences, all products follow a similar approach to Pharmaceutical Development, which includes an integrated control strategy that relies on a clinical target product profile (TPP), a quality target product profile (QTPP), biophysical, biochemical and biological characterization, elucidation of critical quality attributes (CQAs), and development of an analytical control strategy. Technical and regulatory requirements for biologics development are established in numerous regulatory guidance documents issued by ICH, FDA, EMA, and other bodies. While there is substantial published knowledge on specific studies needed for development of a product, there is no specific guidance on establishing a comprehensive analytical control strategy as part of a modern integrated control strategy. This commentary is Part I of a two-part commentary series on analytical control strategy. In this part we present the foundations that are essential for developing an analytical control strategy to enable efficient lifecycle management across different biologic protein-based therapeutic modalities. In Part II, we will present a stage-appropriate roadmap to implementing an analytical control strategy from discovery research through the commercial life of the biologic.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":"114 7","pages":"Article 103826"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022354925002795","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biologic therapeutics encompass different modalities with vastly different molecular profiles. Despite these differences, all products follow a similar approach to Pharmaceutical Development, which includes an integrated control strategy that relies on a clinical target product profile (TPP), a quality target product profile (QTPP), biophysical, biochemical and biological characterization, elucidation of critical quality attributes (CQAs), and development of an analytical control strategy. Technical and regulatory requirements for biologics development are established in numerous regulatory guidance documents issued by ICH, FDA, EMA, and other bodies. While there is substantial published knowledge on specific studies needed for development of a product, there is no specific guidance on establishing a comprehensive analytical control strategy as part of a modern integrated control strategy. This commentary is Part I of a two-part commentary series on analytical control strategy. In this part we present the foundations that are essential for developing an analytical control strategy to enable efficient lifecycle management across different biologic protein-based therapeutic modalities. In Part II, we will present a stage-appropriate roadmap to implementing an analytical control strategy from discovery research through the commercial life of the biologic.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.