{"title":"Accumulation of long-chain unsaturated fatty acids in the airway inflammatory microenvironment drives eosinophil etosis and corticosteroid resistance.","authors":"Yurong Bai, Pengda Fang, Shasha Li, Zhenhao Xiao, Wenyi Chen, Wenlong Li, Xinyue Wang, Jingyuan Chen, Yue Li, Junhai Chen, Weiqiang Huang, Xin Luo, Shigeharu Ueki, Deyu Fang, Qintai Yang, Yana Zhang","doi":"10.1186/s12964-025-02217-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eosinophilic inflammation is a feature of chronic rhinosinusitis with nasal polyps (CRSwNP). Patients with eosinophilic CRSwNP (ENP) tend to be refractory and prone to recurrence. Although there is increasing evidence linking lipid metabolic irregularities to eosinophilia, the particular lipid responsible for promoting eosinophilic inflammation and the precise molecular mechanisms involved remain unclear.</p><p><strong>Methods: </strong>Lipidomic atlas and metabolic pathway enrichment were identified by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. Eosinophil extracellular trap cell death (EETosis) was detected by immunofluorescence microscopy and transmission electron microscopy. Functional analyses were performed on purified eosinophils.</p><p><strong>Results: </strong>The unbiased lipidomic atlas identified a specific accumulation in long-chain fatty acids (LCFAs) in ENP. Consistently, RNA-seq analysis confirmed the enrichment in long-chain unsaturated fatty acid metabolism pathway in ENP. In this lipid-rich airway inflammatory environment, EETosis including ETotic eosinophils, EETs release and Charcot-Leyden crystals (CLCs) generation was enhanced in ENP, and associated with disease severity. Further, we found that both saturated and unsaturated LCFAs, such as arachidonic acid, are critical fuel sources to trigger eosinophil activation and filamentous DNA release, whereas only arachidonic acid could induce crystalline Galectin10 (CLCs). Mechanistically, arachidonic acid induces EETosis through a mechanism independent of reactive oxygen species but the IRE1α/XBP1s/PAD4 pathway. Both the long-acting dexamethasone and short-acting hydrocortisone, while facilitate eosinophil apoptosis, are ineffective to block arachidonic acid-induced EETosis.</p><p><strong>Conclusions: </strong>Our findings demonstrate a previously unknown role of the LCFA arachidonic acid in mediating EETosis and glucocorticoid insensitivity to drive ENP progression, which may lead to novel insights regarding the treatment of patients with refractory eosinophilic inflammation.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"217"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02217-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Eosinophilic inflammation is a feature of chronic rhinosinusitis with nasal polyps (CRSwNP). Patients with eosinophilic CRSwNP (ENP) tend to be refractory and prone to recurrence. Although there is increasing evidence linking lipid metabolic irregularities to eosinophilia, the particular lipid responsible for promoting eosinophilic inflammation and the precise molecular mechanisms involved remain unclear.
Methods: Lipidomic atlas and metabolic pathway enrichment were identified by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. Eosinophil extracellular trap cell death (EETosis) was detected by immunofluorescence microscopy and transmission electron microscopy. Functional analyses were performed on purified eosinophils.
Results: The unbiased lipidomic atlas identified a specific accumulation in long-chain fatty acids (LCFAs) in ENP. Consistently, RNA-seq analysis confirmed the enrichment in long-chain unsaturated fatty acid metabolism pathway in ENP. In this lipid-rich airway inflammatory environment, EETosis including ETotic eosinophils, EETs release and Charcot-Leyden crystals (CLCs) generation was enhanced in ENP, and associated with disease severity. Further, we found that both saturated and unsaturated LCFAs, such as arachidonic acid, are critical fuel sources to trigger eosinophil activation and filamentous DNA release, whereas only arachidonic acid could induce crystalline Galectin10 (CLCs). Mechanistically, arachidonic acid induces EETosis through a mechanism independent of reactive oxygen species but the IRE1α/XBP1s/PAD4 pathway. Both the long-acting dexamethasone and short-acting hydrocortisone, while facilitate eosinophil apoptosis, are ineffective to block arachidonic acid-induced EETosis.
Conclusions: Our findings demonstrate a previously unknown role of the LCFA arachidonic acid in mediating EETosis and glucocorticoid insensitivity to drive ENP progression, which may lead to novel insights regarding the treatment of patients with refractory eosinophilic inflammation.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.