Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation.

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Applied Network Science Pub Date : 2025-01-01 Epub Date: 2025-04-22 DOI:10.1007/s41109-025-00694-y
Maxwell H Wang, Jukka-Pekka Onnela
{"title":"Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation.","authors":"Maxwell H Wang, Jukka-Pekka Onnela","doi":"10.1007/s41109-025-00694-y","DOIUrl":null,"url":null,"abstract":"<p><p>In models of infectious disease dynamics, the incorporation of contact network information allows for the capture of the non-randomness and heterogeneity of realistic contact patterns. Oftentimes, it is assumed that this underlying network is known with perfect certainty. However, in realistic settings, the observed data usually serves as an imperfect proxy of the actual contact patterns in the population. Furthermore, event times in observed epidemics are not perfectly recorded; individual infection and recovery times are often missing. In order to conduct accurate inferences on parameters of contagion spread, it is crucial to incorporate these sources of uncertainty. In this paper, we propose the use of Network-augmented Mixture Density Network-compressed ABC (NA-MDN-ABC) to learn informative summary statistics for the available data. This method will allow for Bayesian inference on the parameters of a contagious process, while accounting for imperfect observations on the epidemic and the contact network. We will demonstrate the use of this method on simulated epidemics and networks, and extend this framework to analyze the spread of Tattoo Skin Disease (TSD) among bottlenose dolphins in Shark Bay, Australia.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"10 1","pages":"13"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-025-00694-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In models of infectious disease dynamics, the incorporation of contact network information allows for the capture of the non-randomness and heterogeneity of realistic contact patterns. Oftentimes, it is assumed that this underlying network is known with perfect certainty. However, in realistic settings, the observed data usually serves as an imperfect proxy of the actual contact patterns in the population. Furthermore, event times in observed epidemics are not perfectly recorded; individual infection and recovery times are often missing. In order to conduct accurate inferences on parameters of contagion spread, it is crucial to incorporate these sources of uncertainty. In this paper, we propose the use of Network-augmented Mixture Density Network-compressed ABC (NA-MDN-ABC) to learn informative summary statistics for the available data. This method will allow for Bayesian inference on the parameters of a contagious process, while accounting for imperfect observations on the epidemic and the contact network. We will demonstrate the use of this method on simulated epidemics and networks, and extend this framework to analyze the spread of Tattoo Skin Disease (TSD) among bottlenose dolphins in Shark Bay, Australia.

用近似贝叶斯计算解释传染病推断中接触网络的不确定性。
在传染病动力学模型中,接触网络信息的结合允许捕获现实接触模式的非随机性和异质性。通常,假设这个底层网络是完全确定的。然而,在现实环境中,观察到的数据通常不能完全代表人群中的实际接触模式。此外,观察到的流行病的事件时间没有得到完美的记录;个体感染和恢复时间常常被遗漏。为了对传染病传播参数进行准确的推断,将这些不确定性来源纳入其中是至关重要的。在本文中,我们提出使用网络增强混合密度网络压缩ABC (NA-MDN-ABC)来学习可用数据的信息汇总统计。这种方法将允许对传染过程的参数进行贝叶斯推断,同时考虑到对流行病和接触网络的不完美观察。我们将在模拟流行病和网络上演示该方法的使用,并将该框架扩展到分析纹身皮肤病(TSD)在澳大利亚鲨鱼湾宽吻海豚中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信