{"title":"Quantitative cancer-immunity cycle modeling for predicting disease progression in advanced metastatic colorectal cancer.","authors":"Chenghang Li, Yongchang Wei, Jinzhi Lei","doi":"10.1038/s41540-025-00513-1","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with advanced metastatic colorectal cancer (mCRC) typically exhibit significant interindividual differences in treatment responses and face poor survival outcomes. To systematically analyze the heterogeneous tumor progression and recurrence observed in advanced mCRC patients, we developed a quantitative cancer-immunity cycle (QCIC) model. The QCIC model employs differential equations to capture the biological mechanisms underlying the cancer-immunity cycle and predicts tumor evolution dynamics under various treatment strategies through stochastic computational methods. We introduce the treatment response index (TRI) to quantify disease progression in virtual clinical trials and the death probability function (DPF) to estimate overall survival. Additionally, we investigate the impact of predictive biomarkers on survival prognosis in advanced mCRC patients, identifying tumor-infiltrating CD8+ cytotoxic T lymphocytes (CTLs) as key predictors of disease progression and the tumor-infiltrating CD4+ Th1/Treg ratio as a significant determinant of survival outcomes. This study presents an approach that bridges the gap between diverse clinical data sources and the generation of virtual patient cohorts, providing valuable insights into interindividual treatment variability and survival forecasting in mCRC patients.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"33"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00513-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with advanced metastatic colorectal cancer (mCRC) typically exhibit significant interindividual differences in treatment responses and face poor survival outcomes. To systematically analyze the heterogeneous tumor progression and recurrence observed in advanced mCRC patients, we developed a quantitative cancer-immunity cycle (QCIC) model. The QCIC model employs differential equations to capture the biological mechanisms underlying the cancer-immunity cycle and predicts tumor evolution dynamics under various treatment strategies through stochastic computational methods. We introduce the treatment response index (TRI) to quantify disease progression in virtual clinical trials and the death probability function (DPF) to estimate overall survival. Additionally, we investigate the impact of predictive biomarkers on survival prognosis in advanced mCRC patients, identifying tumor-infiltrating CD8+ cytotoxic T lymphocytes (CTLs) as key predictors of disease progression and the tumor-infiltrating CD4+ Th1/Treg ratio as a significant determinant of survival outcomes. This study presents an approach that bridges the gap between diverse clinical data sources and the generation of virtual patient cohorts, providing valuable insights into interindividual treatment variability and survival forecasting in mCRC patients.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.