Leonardo L Fruttero, Jimena Leyria, Rodrigo Ligabue-Braun, Pedro Clop, Pedro A Paglione, Maria A Perillo, Celia R Carlini, Estela Arrese, Lilián E Canavoso
{"title":"β-ATPase of the Insect Panstrongylus megistus: Cloning, Bioinformatics Analysis, and Study of Its Interaction With Lipophorin.","authors":"Leonardo L Fruttero, Jimena Leyria, Rodrigo Ligabue-Braun, Pedro Clop, Pedro A Paglione, Maria A Perillo, Celia R Carlini, Estela Arrese, Lilián E Canavoso","doi":"10.1002/prot.26830","DOIUrl":null,"url":null,"abstract":"<p><p>Lipophorin is the main lipoprotein of the insect's hemolymph. Although its role in lipid metabolism has been extensively analyzed, the mechanisms of lipid delivery to target tissues mediated by lipophorin are not completely understood. It has been reported that the β-chain of the ATP synthase complex (β-ATPase) acts as a nonendocytic receptor for lipophorin in the hematophagous insect Panstrongylus megistus, and this function is relevant for the transfer of lipids. The aim of this study was to gather new information regarding the β-ATPase, including its sequence and interaction with lipophorin. A β-ATPase cDNA encoding a 521-amino acid protein was cloned from P. megistus. β-ATPase is highly conserved, and molecular phylogenetic analyses grouped the deduced amino acid sequences according to their respective taxa. Structural modeling of β-ATPase revealed a conserved folding pattern and three-dimensional architecture that allows docking with a modeled lipophorin, suggesting potential interaction between the two proteins. Recombinant β-ATPase (rβ-ATPase) was expressed in Escherichia coli, and the rβ-ATPase was purified by affinity chromatography. rβ-ATPase was combined with lipophorin at various ratios, and the sedimentation properties of these mixtures were analyzed by analytical ultracentrifugation. The changes in sedimentation behavior of the protein mixture compared to that of the individual proteins are consistent with binding between rβ-ATPase and lipophorin. This finding, which confirms the interaction of β-ATPase and lipophorin, provides additional support for the role of β-ATPase in the uptake of lipids by tissues.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26830","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipophorin is the main lipoprotein of the insect's hemolymph. Although its role in lipid metabolism has been extensively analyzed, the mechanisms of lipid delivery to target tissues mediated by lipophorin are not completely understood. It has been reported that the β-chain of the ATP synthase complex (β-ATPase) acts as a nonendocytic receptor for lipophorin in the hematophagous insect Panstrongylus megistus, and this function is relevant for the transfer of lipids. The aim of this study was to gather new information regarding the β-ATPase, including its sequence and interaction with lipophorin. A β-ATPase cDNA encoding a 521-amino acid protein was cloned from P. megistus. β-ATPase is highly conserved, and molecular phylogenetic analyses grouped the deduced amino acid sequences according to their respective taxa. Structural modeling of β-ATPase revealed a conserved folding pattern and three-dimensional architecture that allows docking with a modeled lipophorin, suggesting potential interaction between the two proteins. Recombinant β-ATPase (rβ-ATPase) was expressed in Escherichia coli, and the rβ-ATPase was purified by affinity chromatography. rβ-ATPase was combined with lipophorin at various ratios, and the sedimentation properties of these mixtures were analyzed by analytical ultracentrifugation. The changes in sedimentation behavior of the protein mixture compared to that of the individual proteins are consistent with binding between rβ-ATPase and lipophorin. This finding, which confirms the interaction of β-ATPase and lipophorin, provides additional support for the role of β-ATPase in the uptake of lipids by tissues.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.