Molecular dynamics simulations reveal R399Q mutation disrupts XRCC1-polβ interaction, potentially impairing DNA base excision repair pathway.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nabajyoti Goswami, Rupam Dutta, Rene Barbie Browne, Probodh Borah, Saurov Mahanta, Subhash Medhi
{"title":"Molecular dynamics simulations reveal R399Q mutation disrupts XRCC1-polβ interaction, potentially impairing DNA base excision repair pathway.","authors":"Nabajyoti Goswami, Rupam Dutta, Rene Barbie Browne, Probodh Borah, Saurov Mahanta, Subhash Medhi","doi":"10.1080/07391102.2025.2481591","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in XRCC1 can disrupt essential protein-protein interactions required for DNA base excision repair, potentially leading to genomic instability and increased cancer risk. This study employs large-scale molecular dynamics simulations to investigate the structural and functional consequences of the R399Q mutation on interactions with DNA ligase IIIα and DNA polymerase β. The results reveal that while the mutant protein retains a stable interaction with DNA ligase IIIα, key residues such as Gly 511, Glu 538, Arg 564, Thr 567 and Ala 568, which form critical hydrogen bonds, exhibit subtle rearrangements. In contrast, binding to DNA polymerase β is significantly destabilized, disrupting key interactions involving Glu 85, Ser 92, Arg 109 and Gly 556. Free energy calculations confirm a substantial reduction in binding affinity between the mutant protein and DNA polymerase β, suggesting an impaired repair efficiency. Unlike previous studies that relied on static structural models or biochemical characterizations, this research provides dynamic, atomic-level insights into how the mutation alters protein stability and interactions over biologically relevant timescales. These findings reconcile conflicting experimental observations and establish a computational framework for understanding mutation-driven defects in DNA repair. Interestingly, the data generated by these extensive simulations resemble empirical findings regarding XRCC1's interactions with BER enzymes. The study thus provides valuable insights into how the R399Q mutation impairs XRCC1's interactions with key DNA repair enzymes, potentially leading to defects in the DNA repair pathway and offering a computational perspective that aligns with experimental observations.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-22"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2481591","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations in XRCC1 can disrupt essential protein-protein interactions required for DNA base excision repair, potentially leading to genomic instability and increased cancer risk. This study employs large-scale molecular dynamics simulations to investigate the structural and functional consequences of the R399Q mutation on interactions with DNA ligase IIIα and DNA polymerase β. The results reveal that while the mutant protein retains a stable interaction with DNA ligase IIIα, key residues such as Gly 511, Glu 538, Arg 564, Thr 567 and Ala 568, which form critical hydrogen bonds, exhibit subtle rearrangements. In contrast, binding to DNA polymerase β is significantly destabilized, disrupting key interactions involving Glu 85, Ser 92, Arg 109 and Gly 556. Free energy calculations confirm a substantial reduction in binding affinity between the mutant protein and DNA polymerase β, suggesting an impaired repair efficiency. Unlike previous studies that relied on static structural models or biochemical characterizations, this research provides dynamic, atomic-level insights into how the mutation alters protein stability and interactions over biologically relevant timescales. These findings reconcile conflicting experimental observations and establish a computational framework for understanding mutation-driven defects in DNA repair. Interestingly, the data generated by these extensive simulations resemble empirical findings regarding XRCC1's interactions with BER enzymes. The study thus provides valuable insights into how the R399Q mutation impairs XRCC1's interactions with key DNA repair enzymes, potentially leading to defects in the DNA repair pathway and offering a computational perspective that aligns with experimental observations.

分子动力学模拟显示,R399Q突变破坏xrcc1 -pol - β相互作用,可能损害DNA碱基切除修复途径。
XRCC1的突变可以破坏DNA碱基切除修复所需的基本蛋白质-蛋白质相互作用,可能导致基因组不稳定和癌症风险增加。本研究采用大规模分子动力学模拟来研究R399Q突变对DNA连接酶IIIα和DNA聚合酶β相互作用的结构和功能影响。结果表明,虽然突变蛋白与DNA连接酶IIIα保持稳定的相互作用,但形成关键氢键的关键残基如Gly 511、Glu 538、Arg 564、Thr 567和Ala 568表现出微妙的重排。相反,与DNA聚合酶β的结合明显不稳定,破坏了涉及Glu 85、Ser 92、Arg 109和Gly 556的关键相互作用。自由能计算证实突变蛋白与DNA聚合酶β之间的结合亲和力大幅降低,表明修复效率受损。与以往依赖于静态结构模型或生化表征的研究不同,这项研究提供了动态的、原子水平的见解,了解突变如何在生物学相关的时间尺度上改变蛋白质稳定性和相互作用。这些发现调和了相互矛盾的实验观察结果,并建立了一个理解DNA修复中突变驱动缺陷的计算框架。有趣的是,这些广泛模拟产生的数据类似于关于XRCC1与BER酶相互作用的经验发现。因此,该研究为R399Q突变如何损害XRCC1与关键DNA修复酶的相互作用提供了有价值的见解,这可能导致DNA修复途径中的缺陷,并提供了与实验观察一致的计算视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信