Evaluation of a silicone-based flexible dry electrode for measuring human bioelectrical signals.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2025-04-05 eCollection Date: 2025-05-01 DOI:10.1007/s13534-025-00471-x
Chang-Hee Han, Seong-Uk Kim, Kyung-Soo Lim, Young-Jin Jung, Sangho Lee, Sung Hoon Kim, Han-Jeong Hwang
{"title":"Evaluation of a silicone-based flexible dry electrode for measuring human bioelectrical signals.","authors":"Chang-Hee Han, Seong-Uk Kim, Kyung-Soo Lim, Young-Jin Jung, Sangho Lee, Sung Hoon Kim, Han-Jeong Hwang","doi":"10.1007/s13534-025-00471-x","DOIUrl":null,"url":null,"abstract":"<p><p>The development of conductive polymer-based dry electrodes with high conductivity is promising for practical applications in daily life due to their biocompatibility, flexibility, lightweight, and comfort. The objective of this study is to demonstrate the feasibility of using a novel silicone-based dry electrode for measuring various bioelectrical signals.The silicone-based electrode, manufactured using an optimized polymer matrix, combines high conductivity with flexibility, ensuring superior wearability and reliable bioelectrical signal monitoring. To evaluate its performance, we compared its impedance and flexibility with those of a commercial electrode. Additionally, its compatibility for measuring biological signals was assessed through performance comparisons across various bioelectrical signals. Fourteen healthy participants performed three experimental paradigms: (1) eyes closed and open to measure alpha electroencephalography (EEG) as well as resting-state electrocardiography (ECG), (2) eye blinking to measure electrooculography (EOG), and (3) wrist movement to measure electromyography (EMG). All bioelectrical signals were measured simultaneously using both the silicone-based dry electrode and a commercial dry electrode. The performance of the silicone-based dry electrode was evaluated by comparing the signal quality of both electrodes. The silicone-based dry electrode exhibited lower electrical impedance (39.43 kΩ on average, <i>p</i> = 0.0058) and greater flexibility (Young's modulus: silicone 1.51 ± 0.10 MPa vs. commercial 2.46 ± 0.38 MPa) compared to the commercial dry electrode. Overall, there were minimal differences in signal quality between the two electrodes: i) EEG (α power SNR: silicone 1.39 ± 0.34 vs. commercial 1.36 ± 0.29), ii) ECG (R-peak recall: 99.20 ± 2.50%, correlation coefficient: 0.96 ± 0.08), iii) EOG (eye blink recall: 100.00%, correlation coefficient: 0.98 ± 0.03), and iv) EMG (no significant difference in SNR values). These findings indicate that the developed electrode not only ensures superior flexibility but also maintains compatible electrical properties for measuring various bioelectrical signals.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 3","pages":"563-574"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00471-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of conductive polymer-based dry electrodes with high conductivity is promising for practical applications in daily life due to their biocompatibility, flexibility, lightweight, and comfort. The objective of this study is to demonstrate the feasibility of using a novel silicone-based dry electrode for measuring various bioelectrical signals.The silicone-based electrode, manufactured using an optimized polymer matrix, combines high conductivity with flexibility, ensuring superior wearability and reliable bioelectrical signal monitoring. To evaluate its performance, we compared its impedance and flexibility with those of a commercial electrode. Additionally, its compatibility for measuring biological signals was assessed through performance comparisons across various bioelectrical signals. Fourteen healthy participants performed three experimental paradigms: (1) eyes closed and open to measure alpha electroencephalography (EEG) as well as resting-state electrocardiography (ECG), (2) eye blinking to measure electrooculography (EOG), and (3) wrist movement to measure electromyography (EMG). All bioelectrical signals were measured simultaneously using both the silicone-based dry electrode and a commercial dry electrode. The performance of the silicone-based dry electrode was evaluated by comparing the signal quality of both electrodes. The silicone-based dry electrode exhibited lower electrical impedance (39.43 kΩ on average, p = 0.0058) and greater flexibility (Young's modulus: silicone 1.51 ± 0.10 MPa vs. commercial 2.46 ± 0.38 MPa) compared to the commercial dry electrode. Overall, there were minimal differences in signal quality between the two electrodes: i) EEG (α power SNR: silicone 1.39 ± 0.34 vs. commercial 1.36 ± 0.29), ii) ECG (R-peak recall: 99.20 ± 2.50%, correlation coefficient: 0.96 ± 0.08), iii) EOG (eye blink recall: 100.00%, correlation coefficient: 0.98 ± 0.03), and iv) EMG (no significant difference in SNR values). These findings indicate that the developed electrode not only ensures superior flexibility but also maintains compatible electrical properties for measuring various bioelectrical signals.

用于人体生物电信号测量的硅基柔性干电极的评价。
高导电性聚合物基干电极具有生物相容性、柔韧性、轻量化和舒适性等优点,在日常生活中具有广阔的应用前景。本研究的目的是证明使用新型硅基干电极测量各种生物电信号的可行性。硅基电极使用优化的聚合物基质制造,结合了高导电性和灵活性,确保了卓越的可穿戴性和可靠的生物电信号监测。为了评估其性能,我们将其阻抗和柔韧性与商业电极进行了比较。此外,通过各种生物电信号的性能比较,评估了其测量生物信号的兼容性。14名健康参与者进行了三种实验范式:(1)闭眼和睁眼测量α脑电图(EEG)和静息状态心电图(ECG),(2)眨眼测量眼电图(EOG),(3)手腕运动测量肌电图(EMG)。使用硅基干电极和商用干电极同时测量所有生物电信号。通过比较两种电极的信号质量来评价硅基干电极的性能。与商业干电极相比,硅基干电极表现出更低的电阻抗(平均39.43 kΩ, p = 0.0058)和更大的柔韧性(杨氏模量:硅基为1.51±0.10 MPa,商用为2.46±0.38 MPa)。总的来说,两种电极之间的信号质量差异很小:1)EEG (α功率信噪比:硅胶1.39±0.34 vs.商用1.36±0.29),2)ECG (r -峰召回率:99.20±2.50%,相关系数:0.96±0.08),3)EOG(眨眼召回率:100.00%,相关系数:0.98±0.03),4)EMG(信噪比值无显著差异)。这些发现表明,所开发的电极不仅保证了优越的灵活性,而且保持了测量各种生物电信号的兼容电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信