Chronic Arsenic Exposure Causes Alzheimer's Disease Characteristic Effects and the Intervention of Fecal Microbiota Transplantation in Rats.

IF 2.7 4区 医学 Q3 TOXICOLOGY
Shuyuan Li, Jia Li, Kun Chen, Jing Wang, Longmei Wang, Chao Feng, Kanglin Wang, Yifan Xu, Yi Gao, Xiaoyan Yan, Qian Zhao, Ben Li, Yulan Qiu
{"title":"Chronic Arsenic Exposure Causes Alzheimer's Disease Characteristic Effects and the Intervention of Fecal Microbiota Transplantation in Rats.","authors":"Shuyuan Li, Jia Li, Kun Chen, Jing Wang, Longmei Wang, Chao Feng, Kanglin Wang, Yifan Xu, Yi Gao, Xiaoyan Yan, Qian Zhao, Ben Li, Yulan Qiu","doi":"10.1002/jat.4782","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic exposure and intestinal microbiota disorders may be related with Alzheimer's disease (AD), but the mechanism has not been elucidated. This study conducted chronic arsenic exposure from rat's maternal body to adult offspring to investigate the mechanisms of the characteristic effects of chronic arsenic exposure on AD, and further explored the intervention effect of fecal microbiota transplantation (FMT) on arsenic-mediated neurotoxicity. Transmission electron microscopy, HE staining, and related indicators were measured in the control group, the exposed group, and the FMT intervention group. Western blot was used to determine microtubule-associated proteins Tau and p-Tau<sub>396</sub>, intestinal-brain barrier-related proteins Claudin-1 and Occludin, ELISA was used to detect the content of Aβ<sub>1-42</sub>, and 16S rRNA sequencing was used to detect the intestinal flora of feces. Results showed that chronic arsenic exposure could lead to neurobehavioral defects in rats, increase the expression levels of Tau, p-Tau<sub>396</sub>, and Aβ<sub>1-42</sub> in hippocampus (p < 0.05), increase the abundance of Clostridium _ UCG-014, decrease the abundance of Roseburia, and decrease the expression levels of Claudin-1 and Occludin in colon and hippocampus (p < 0.05). After FMT intervention, the expression levels of Tau and p-Tau<sub>396</sub> were decreased (p < 0.05), and the abundance of Roseburia was increased. In summary, chronic arsenic exposure caused intestinal flora disorder by changing the abundance of inflammation-related flora, thereby destroying the gut-brain barrier and causing AD characteristic effects in rats. Although the bacterial specific genus was improved and the expression of AD-related proteins was reduced after transplantation, it could not alleviate the neurobehavioral defects and neurotoxicity caused by arsenic exposure.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic exposure and intestinal microbiota disorders may be related with Alzheimer's disease (AD), but the mechanism has not been elucidated. This study conducted chronic arsenic exposure from rat's maternal body to adult offspring to investigate the mechanisms of the characteristic effects of chronic arsenic exposure on AD, and further explored the intervention effect of fecal microbiota transplantation (FMT) on arsenic-mediated neurotoxicity. Transmission electron microscopy, HE staining, and related indicators were measured in the control group, the exposed group, and the FMT intervention group. Western blot was used to determine microtubule-associated proteins Tau and p-Tau396, intestinal-brain barrier-related proteins Claudin-1 and Occludin, ELISA was used to detect the content of Aβ1-42, and 16S rRNA sequencing was used to detect the intestinal flora of feces. Results showed that chronic arsenic exposure could lead to neurobehavioral defects in rats, increase the expression levels of Tau, p-Tau396, and Aβ1-42 in hippocampus (p < 0.05), increase the abundance of Clostridium _ UCG-014, decrease the abundance of Roseburia, and decrease the expression levels of Claudin-1 and Occludin in colon and hippocampus (p < 0.05). After FMT intervention, the expression levels of Tau and p-Tau396 were decreased (p < 0.05), and the abundance of Roseburia was increased. In summary, chronic arsenic exposure caused intestinal flora disorder by changing the abundance of inflammation-related flora, thereby destroying the gut-brain barrier and causing AD characteristic effects in rats. Although the bacterial specific genus was improved and the expression of AD-related proteins was reduced after transplantation, it could not alleviate the neurobehavioral defects and neurotoxicity caused by arsenic exposure.

慢性砷暴露引起大鼠阿尔茨海默病的特征效应及粪便微生物群移植的干预
砷暴露和肠道菌群紊乱可能与阿尔茨海默病(AD)有关,但其机制尚未阐明。本研究通过大鼠母体对成年后代的慢性砷暴露,探讨慢性砷暴露对AD特特性影响的机制,并进一步探讨粪便微生物群移植(FMT)对砷介导的神经毒性的干预作用。对对照组、暴露组、FMT干预组进行透射电镜、HE染色及相关指标测定。Western blot检测微管相关蛋白Tau和p-Tau396,肠脑屏障相关蛋白Claudin-1和Occludin, ELISA检测a - β1-42含量,16S rRNA测序检测粪便肠道菌群。结果表明,慢性砷暴露可导致大鼠神经行为缺陷,增加海马中Tau、p- tau396和a - β1-42的表达水平(p 396降低(p 396))
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信