Madeleine F Jennewein, Michael D Schultz, Samuel Beaver, Peter Battisti, Julie Bakken, Derek Hanson, Jobaida Akther, Fen Zhou, Raodoh Mohamath, Jasneet Singh, Noah Cross, Darshan N Kasal, Matthew R Ykema, Sierra Reed, Davies Kalange, Isabella R Cheatwood, Jennifer L Tipper, Jeremy B Foote, R Glenn King, Aaron Silva-Sanchez, Kevin S Harrod, Davide Botta, Alana Gerhardt, Corey Casper, Troy D Randall, Frances E Lund, Emily A Voigt
{"title":"Intranasal replicon SARS-CoV-2 vaccine produces protective respiratory and systemic immunity and prevents viral transmission.","authors":"Madeleine F Jennewein, Michael D Schultz, Samuel Beaver, Peter Battisti, Julie Bakken, Derek Hanson, Jobaida Akther, Fen Zhou, Raodoh Mohamath, Jasneet Singh, Noah Cross, Darshan N Kasal, Matthew R Ykema, Sierra Reed, Davies Kalange, Isabella R Cheatwood, Jennifer L Tipper, Jeremy B Foote, R Glenn King, Aaron Silva-Sanchez, Kevin S Harrod, Davide Botta, Alana Gerhardt, Corey Casper, Troy D Randall, Frances E Lund, Emily A Voigt","doi":"10.1016/j.ymthe.2025.04.007","DOIUrl":null,"url":null,"abstract":"<p><p>While mRNA vaccines have been effective in combating SARS-CoV-2, the waning of vaccine-induced antibody responses and lack of vaccine-induced respiratory tract immunity contribute to ongoing infection and transmission. In this work, we compare and contrast intranasal (i.n.) and intramuscular (i.m.) administration of a SARS-CoV-2 replicon vaccine delivered by a nanostructured lipid carrier (NLC). Both i.m. and i.n. vaccines induce potent systemic serum neutralizing antibodies, bone marrow-resident immunoglobulin G-secreting cells, and splenic T cell responses. The i.n. vaccine additionally induces robust respiratory mucosal immune responses, including SARS-CoV-2-reactive lung-resident memory T cell populations. As a booster following previous i.m. vaccination, the i.n. vaccine also elicits the development of mucosal virus-specific T cells. Both the i.m.- and i.n.-administered vaccines durably protect hamsters from infection-associated morbidity upon viral challenge, significantly reducing viral loads and preventing challenged hamsters from transmitting virus to naive cagemates. This replicon-NLC vaccine's potent systemic immunogenicity, and additional mucosal immunogenicity when delivered i.n., may be key for combating SARS-CoV-2 and other respiratory pathogens.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.04.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While mRNA vaccines have been effective in combating SARS-CoV-2, the waning of vaccine-induced antibody responses and lack of vaccine-induced respiratory tract immunity contribute to ongoing infection and transmission. In this work, we compare and contrast intranasal (i.n.) and intramuscular (i.m.) administration of a SARS-CoV-2 replicon vaccine delivered by a nanostructured lipid carrier (NLC). Both i.m. and i.n. vaccines induce potent systemic serum neutralizing antibodies, bone marrow-resident immunoglobulin G-secreting cells, and splenic T cell responses. The i.n. vaccine additionally induces robust respiratory mucosal immune responses, including SARS-CoV-2-reactive lung-resident memory T cell populations. As a booster following previous i.m. vaccination, the i.n. vaccine also elicits the development of mucosal virus-specific T cells. Both the i.m.- and i.n.-administered vaccines durably protect hamsters from infection-associated morbidity upon viral challenge, significantly reducing viral loads and preventing challenged hamsters from transmitting virus to naive cagemates. This replicon-NLC vaccine's potent systemic immunogenicity, and additional mucosal immunogenicity when delivered i.n., may be key for combating SARS-CoV-2 and other respiratory pathogens.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.