Bang M Tran, Linda Earnest, Dustin J Flanagan, Jean M Moselen, Hoanh Tran, Joseph Torresi, Elizabeth Vincan
{"title":"A Robust Human Liver Organoid Model of Hepatitis B Virus Infection.","authors":"Bang M Tran, Linda Earnest, Dustin J Flanagan, Jean M Moselen, Hoanh Tran, Joseph Torresi, Elizabeth Vincan","doi":"10.1007/7651_2025_626","DOIUrl":null,"url":null,"abstract":"<p><p>The hepatitis B virus (HBV) only robustly infects primary human hepatocytes. This strict viral host and cell tropism has hampered the development of physiologically relevant in vitro culture models of HBV infection. Primary human hepatocytes (PHH) are robustly infected by HBV but are short-lived in tissue culture and rapidly lose their hepatocyte characteristics. Human tissue-derived liver organoids are a novel in vitro physiologically relevant model that supports infection by HBV and mitigates the limitations of PHH. Liver organoids are established by placing tissue fragments into a three-dimensional (3D) basement membrane-rich matrix dome bathed in medium containing supplements and growth factors to support organoid growth. The organoids can be expanded in vitro, cryopreserved, and are genetically stable. The expansion phase organoids, once differentiated to a hepatocyte phenotype, support HBV infection. We couple liver organoids with an adenoviral delivery system to achieve robust HBV infection. This robust model supports the full HBV virus replication cycle.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The hepatitis B virus (HBV) only robustly infects primary human hepatocytes. This strict viral host and cell tropism has hampered the development of physiologically relevant in vitro culture models of HBV infection. Primary human hepatocytes (PHH) are robustly infected by HBV but are short-lived in tissue culture and rapidly lose their hepatocyte characteristics. Human tissue-derived liver organoids are a novel in vitro physiologically relevant model that supports infection by HBV and mitigates the limitations of PHH. Liver organoids are established by placing tissue fragments into a three-dimensional (3D) basement membrane-rich matrix dome bathed in medium containing supplements and growth factors to support organoid growth. The organoids can be expanded in vitro, cryopreserved, and are genetically stable. The expansion phase organoids, once differentiated to a hepatocyte phenotype, support HBV infection. We couple liver organoids with an adenoviral delivery system to achieve robust HBV infection. This robust model supports the full HBV virus replication cycle.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.