Yizheng Chen, Sheng Liu, Mingjie Li, Bin Han, Lei Xing
{"title":"Inference-specific learning for improved medical image segmentation.","authors":"Yizheng Chen, Sheng Liu, Mingjie Li, Bin Han, Lei Xing","doi":"10.1002/mp.17883","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning networks map input data to output predictions by fitting network parameters using training data. However, applying a trained network to new, unseen inference data resembles an interpolation process, which may lead to inaccurate predictions if the training and inference data distributions differ significantly.</p><p><strong>Purpose: </strong>This study aims to generally improve the prediction accuracy of deep learning networks on the inference case by bridging the gap between training and inference data.</p><p><strong>Methods: </strong>We propose an inference-specific learning strategy to enhance the network learning process without modifying the network structure. By aligning training data to closely match the specific inference data, we generate an inference-specific training dataset, enhancing the network optimization around the inference data point for more accurate predictions. Taking medical image auto-segmentation as an example, we develop an inference-specific auto-segmentation framework consisting of initial segmentation learning, inference-specific training data deformation, and inference-specific segmentation refinement. The framework is evaluated on public abdominal, head-neck, and pancreas CT datasets comprising 30, 42, and 210 cases, respectively, for medical image segmentation.</p><p><strong>Results: </strong>Experimental results show that our method improves the organ-averaged mean Dice by 6.2% (p-value = 0.001), 1.5% (p-value = 0.003), and 3.7% (p-value < 0.001) on the three datasets, respectively, with a more notable increase for difficult-to-segment organs (such as a 21.7% increase for the gallbladder [p-value = 0.004]). By incorporating organ mask-based weak supervision into the training data alignment learning, the inference-specific auto-segmentation accuracy is generally improved compared with the image intensity-based alignment. Besides, a moving-averaged calculation of the inference organ mask during the learning process strengthens both the robustness and accuracy of the final inference segmentation.</p><p><strong>Conclusions: </strong>By leveraging inference data during training, the proposed inference-specific learning strategy consistently improves auto-segmentation accuracy and holds the potential to be broadly applied for enhanced deep learning decision-making.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep learning networks map input data to output predictions by fitting network parameters using training data. However, applying a trained network to new, unseen inference data resembles an interpolation process, which may lead to inaccurate predictions if the training and inference data distributions differ significantly.
Purpose: This study aims to generally improve the prediction accuracy of deep learning networks on the inference case by bridging the gap between training and inference data.
Methods: We propose an inference-specific learning strategy to enhance the network learning process without modifying the network structure. By aligning training data to closely match the specific inference data, we generate an inference-specific training dataset, enhancing the network optimization around the inference data point for more accurate predictions. Taking medical image auto-segmentation as an example, we develop an inference-specific auto-segmentation framework consisting of initial segmentation learning, inference-specific training data deformation, and inference-specific segmentation refinement. The framework is evaluated on public abdominal, head-neck, and pancreas CT datasets comprising 30, 42, and 210 cases, respectively, for medical image segmentation.
Results: Experimental results show that our method improves the organ-averaged mean Dice by 6.2% (p-value = 0.001), 1.5% (p-value = 0.003), and 3.7% (p-value < 0.001) on the three datasets, respectively, with a more notable increase for difficult-to-segment organs (such as a 21.7% increase for the gallbladder [p-value = 0.004]). By incorporating organ mask-based weak supervision into the training data alignment learning, the inference-specific auto-segmentation accuracy is generally improved compared with the image intensity-based alignment. Besides, a moving-averaged calculation of the inference organ mask during the learning process strengthens both the robustness and accuracy of the final inference segmentation.
Conclusions: By leveraging inference data during training, the proposed inference-specific learning strategy consistently improves auto-segmentation accuracy and holds the potential to be broadly applied for enhanced deep learning decision-making.