Lauar de Brito Monteiro, Shayahati Bieerkehazhi, Ayesha Aijaz, Carly M Knuth, Graham Rix, Ju Hee Lee, Hoon-Ki Sung, Mahmoud Farahat, Marc G Jeschke
{"title":"SVF MEDIATES IMMUNOMETABOLIC ALTERATIONS IN BURN-INDUCED HYPERMETABOLIC ADIPOSE TISSUE VIA MITOCHONDRIAL TRANSFER.","authors":"Lauar de Brito Monteiro, Shayahati Bieerkehazhi, Ayesha Aijaz, Carly M Knuth, Graham Rix, Ju Hee Lee, Hoon-Ki Sung, Mahmoud Farahat, Marc G Jeschke","doi":"10.1097/SHK.0000000000002608","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Adipose tissue (AT) browning promotes systemic alterations in energy expenditure as a response to catecholamine-induced hypermetabolism in severe burn trauma. The AT is composed of the stromal vascular fraction (SVF) and adipocytes. SVF contains a vast population of immune cells that maintain AT homeostasis. Despite evidence that local immune cell accumulation contributes to hypermetabolism, the underlying mechanism of persistent browning response is not known. Thus, we hypothesized that a specific cellular communication between adipocytes and SVF can mediate the severe metabolic alterations associated with hypermetabolism. Therefore, we used a murine burn model to show that postburn hypermetabolism compromises mitochondria respiration and alters the immune cell profile of the AT-SVF. We found that adipocyte-derived signals promote metabolic reprogramming and inflammatory responses by SVF after burns in both mice and humans. Interestingly, adipocytes transfer mitochondria to cells in the SVF including different immune cell (macrophages, T cells, B cells) uptake mitochondria from adipocytes. Such data were replicated in human samples as well. These results indicate that adipocytes play a major role in immunometabolic reprogramming following severe burns through crosstalk with the adipose immune cell population. Therefore, targeting immune cell metabolism restoration is a potential strategy to mitigate the detrimental effects of postburn hypermetabolism on systemic energy balance.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"226-235"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002608","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Adipose tissue (AT) browning promotes systemic alterations in energy expenditure as a response to catecholamine-induced hypermetabolism in severe burn trauma. The AT is composed of the stromal vascular fraction (SVF) and adipocytes. SVF contains a vast population of immune cells that maintain AT homeostasis. Despite evidence that local immune cell accumulation contributes to hypermetabolism, the underlying mechanism of persistent browning response is not known. Thus, we hypothesized that a specific cellular communication between adipocytes and SVF can mediate the severe metabolic alterations associated with hypermetabolism. Therefore, we used a murine burn model to show that postburn hypermetabolism compromises mitochondria respiration and alters the immune cell profile of the AT-SVF. We found that adipocyte-derived signals promote metabolic reprogramming and inflammatory responses by SVF after burns in both mice and humans. Interestingly, adipocytes transfer mitochondria to cells in the SVF including different immune cell (macrophages, T cells, B cells) uptake mitochondria from adipocytes. Such data were replicated in human samples as well. These results indicate that adipocytes play a major role in immunometabolic reprogramming following severe burns through crosstalk with the adipose immune cell population. Therefore, targeting immune cell metabolism restoration is a potential strategy to mitigate the detrimental effects of postburn hypermetabolism on systemic energy balance.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.