A Guide to Basic RNA Sequencing Data Processing and Transcriptomic Analysis.

IF 1 Q3 BIOLOGY
Rowayna Shouib, Gary Eitzen, Rineke Steenbergen
{"title":"A Guide to Basic RNA Sequencing Data Processing and Transcriptomic Analysis.","authors":"Rowayna Shouib, Gary Eitzen, Rineke Steenbergen","doi":"10.21769/BioProtoc.5295","DOIUrl":null,"url":null,"abstract":"<p><p>RNA sequencing (RNA-Seq) has transformed transcriptomic research, enabling researchers to perform large-scale inspection of mRNA levels in living cells. With the growing applicability of this technique to many scientific investigations, the analysis of next-generation sequencing (NGS) data becomes an important yet challenging task, especially for researchers without a bioinformatics background. This protocol offers a beginner-friendly step-by-step guide to analyze NGS data (starting from raw .fastq files), providing the required codes with an explanation of the different steps and software used. We outline a computational workflow that includes quality control, trimming of reads, read alignment to the genome, and gene quantification, ultimately enabling researchers to identify differentially expressed genes and gain insights on mRNA levels. Multiple approaches to visualize this data using statistical and graphical tools in R are also described, allowing the generation of heatmaps and volcano plots to represent genes and gene sets of interest. Key features • Provides a beginner-friendly protocol for RNA-Seq analysis to obtain insights into gene expression. • Pipeline starts with raw .fastq files and involves analysis in command line/terminal and R (via RStudio). • Yields a variety of output files that represent mRNA levels amongst different samples. Output files include count files, heatmaps, ordered lists of DEGs, and volcano plots.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 9","pages":"e5295"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA sequencing (RNA-Seq) has transformed transcriptomic research, enabling researchers to perform large-scale inspection of mRNA levels in living cells. With the growing applicability of this technique to many scientific investigations, the analysis of next-generation sequencing (NGS) data becomes an important yet challenging task, especially for researchers without a bioinformatics background. This protocol offers a beginner-friendly step-by-step guide to analyze NGS data (starting from raw .fastq files), providing the required codes with an explanation of the different steps and software used. We outline a computational workflow that includes quality control, trimming of reads, read alignment to the genome, and gene quantification, ultimately enabling researchers to identify differentially expressed genes and gain insights on mRNA levels. Multiple approaches to visualize this data using statistical and graphical tools in R are also described, allowing the generation of heatmaps and volcano plots to represent genes and gene sets of interest. Key features • Provides a beginner-friendly protocol for RNA-Seq analysis to obtain insights into gene expression. • Pipeline starts with raw .fastq files and involves analysis in command line/terminal and R (via RStudio). • Yields a variety of output files that represent mRNA levels amongst different samples. Output files include count files, heatmaps, ordered lists of DEGs, and volcano plots.

基本RNA测序数据处理和转录组学分析指南。
RNA测序(RNA- seq)已经改变了转录组学研究,使研究人员能够对活细胞中的mRNA水平进行大规模检查。随着这项技术在许多科学研究中的应用越来越广泛,分析下一代测序(NGS)数据成为一项重要但具有挑战性的任务,特别是对于没有生物信息学背景的研究人员。该协议提供了一个初学者友好的分步指南来分析NGS数据(从原始的.fastq文件开始),提供了所需的代码,并解释了不同的步骤和使用的软件。我们概述了一个计算工作流程,包括质量控制、reads修剪、reads与基因组比对和基因定量,最终使研究人员能够识别差异表达基因并获得mRNA水平的见解。还描述了使用R中的统计和图形工具可视化这些数据的多种方法,允许生成热图和火山图来表示感兴趣的基因和基因集。•为RNA-Seq分析提供了一个初学者友好的协议,以获得对基因表达的见解。•流水线从原始的。fastq文件开始,包括命令行/终端和R(通过RStudio)的分析。•产生各种输出文件,表示mRNA水平在不同的样本。输出文件包括计数文件、热图、deg的有序列表和火山图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信