{"title":"Prediction and Evaluation of Coronavirus and Human Protein-Protein Interactions Integrating Five Different Computational Methods.","authors":"Binghua Li, Xiaoyu Li, Xian Tang, Jia Wang","doi":"10.1002/prot.26826","DOIUrl":null,"url":null,"abstract":"<p><p>The high lethality and infectiousness of coronaviruses, particularly SARS-Cov-2, pose a significant threat to human society. Understanding coronaviruses, especially the interactions between these viruses and humans, is crucial for mitigating the coronavirus pandemic. In this study, we conducted a comprehensive comparison and evaluation of five prevalent computational methods: interolog mapping, domain-domain interaction methodology, domain-motif interaction methodology, structure-based approaches, and machine learning techniques. These methods were assessed using unbiased datasets that include C1, C2h, C2v, and C3 test sets. Ultimately, we integrated these five methodologies into a unified model for predicting protein-protein interactions (PPIs) between coronaviruses and human proteins. Our final model demonstrates relatively better performance, particularly with the C2v and C3 test sets, which are frequently used datasets in practical applications. Based on this model, we further established a high-confidence PPI network between coronaviruses and humans, consisting of 18,012 interactions between 3843 human proteins and 129 coronavirus proteins. The reliability of our predictions was further validated through the current knowledge framework and network analysis. This study is anticipated to enhance mechanistic understanding of the coronavirus-human relationship a while facilitating the rediscovery of antiviral drug targets. The source codes and datasets are accessible at https://github.com/covhppilab/CoVHPPI.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26826","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The high lethality and infectiousness of coronaviruses, particularly SARS-Cov-2, pose a significant threat to human society. Understanding coronaviruses, especially the interactions between these viruses and humans, is crucial for mitigating the coronavirus pandemic. In this study, we conducted a comprehensive comparison and evaluation of five prevalent computational methods: interolog mapping, domain-domain interaction methodology, domain-motif interaction methodology, structure-based approaches, and machine learning techniques. These methods were assessed using unbiased datasets that include C1, C2h, C2v, and C3 test sets. Ultimately, we integrated these five methodologies into a unified model for predicting protein-protein interactions (PPIs) between coronaviruses and human proteins. Our final model demonstrates relatively better performance, particularly with the C2v and C3 test sets, which are frequently used datasets in practical applications. Based on this model, we further established a high-confidence PPI network between coronaviruses and humans, consisting of 18,012 interactions between 3843 human proteins and 129 coronavirus proteins. The reliability of our predictions was further validated through the current knowledge framework and network analysis. This study is anticipated to enhance mechanistic understanding of the coronavirus-human relationship a while facilitating the rediscovery of antiviral drug targets. The source codes and datasets are accessible at https://github.com/covhppilab/CoVHPPI.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.