RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alexandra Weiss, James W Gilbert, Iris Valeria Rivera Flores, Jillian Belgrad, Chantal Ferguson, Elif O Dogan, Nicholas Wightman, Kit Mocarski, Dimas Echeverria, Ashley L Harkins, Ashley Summers, Brianna Bramoto, Nicholas McHugh, Raymond Furgal, Nozomi Yamada, David Cooper, Kathryn Monopoli, Bruno M D C Godinho, Matthew R Hassler, Ken Yamada, Paul Greer, Nils Henninger, Robert H Brown, Anastasia Khvorova
{"title":"RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice.","authors":"Alexandra Weiss, James W Gilbert, Iris Valeria Rivera Flores, Jillian Belgrad, Chantal Ferguson, Elif O Dogan, Nicholas Wightman, Kit Mocarski, Dimas Echeverria, Ashley L Harkins, Ashley Summers, Brianna Bramoto, Nicholas McHugh, Raymond Furgal, Nozomi Yamada, David Cooper, Kathryn Monopoli, Bruno M D C Godinho, Matthew R Hassler, Ken Yamada, Paul Greer, Nils Henninger, Robert H Brown, Anastasia Khvorova","doi":"10.1016/j.ymthe.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene suppression a promising approach, supported by preclinical data and the 2023 FDA approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNA<sup>SOD1</sup> extended survival in SOD1-G93A ALS mice, increasing survival beyond that previously seen in these mice by ASO modalities, slowed disease progression according to the standard ALS preclinical endpoints, and attenuated ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.05.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene suppression a promising approach, supported by preclinical data and the 2023 FDA approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNASOD1 extended survival in SOD1-G93A ALS mice, increasing survival beyond that previously seen in these mice by ASO modalities, slowed disease progression according to the standard ALS preclinical endpoints, and attenuated ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.

rnai介导的SOD1沉默极大地延长了ALS小鼠的生存期和功能预后。
肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,20%的家族性病例和2-3%的散发性病例与细胞质超氧化物歧化酶(SOD1)基因突变有关。SOD1突变蛋白对运动神经元具有毒性,这使得SOD1基因抑制成为一种很有前景的方法,这得到了临床前数据和2023年FDA批准的靶向SOD1的GapmeR ASO的支持。尽管ASO获得了批准,并给该领域带来了乐观情绪,但治疗性SOD1调节的药效学和药代动力学仍有待改进。在这里,我们开发了一种化学稳定的二价siRNA支架(di-siRNA),在体外和体内有效抑制SOD1的表达。通过优化的化学修饰,在体内实现了显著的中枢神经系统组织渗透和SOD1沉默。通过脑室内给药,di-siRNASOD1延长了SOD1-G93A ALS小鼠的生存期,超出了之前通过ASO方式在这些小鼠中观察到的生存期,根据标准的ALS临床前终点减缓了疾病进展,并减轻了ALS神经病理学。这些特性为sod1介导的ALS提供了一种改进的治疗策略,并可能扩展到其他主要遗传性神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信