Integrating Fine-Tuned LLM with Acoustic Features for Enhanced Detection of Alzheimer's Disease.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Filippo Casu, Andrea Lagorio, Pietro Ruiu, Giuseppe A Trunfio, Enrico Grosso
{"title":"Integrating Fine-Tuned LLM with Acoustic Features for Enhanced Detection of Alzheimer's Disease.","authors":"Filippo Casu, Andrea Lagorio, Pietro Ruiu, Giuseppe A Trunfio, Enrico Grosso","doi":"10.1109/JBHI.2025.3566615","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia represents a global public health concern, with the early detection of Alzheimer's disease, the most prevalent form of dementia, being of paramount importance. Given the limited availability of suitable biomarkers, research has shown that early cognitive impairment can be identified through patients' spoken language. This paper presents a multi-modal system for automatic Alzheimer's disease detection using speech. The system has been trained on spoken recordings of healthy individuals and Alzheimer's patients describing an image, a task requiring linguistic and cognitive skills. Built on fine-tuned advanced Large Language Models, audio feature extractors, and classifiers, the system, after an extensive comparison of single and multi-modal architectures, achieves optimal results with the combination of Mistral-7B, VGGish, and Support Vector Classifier, outperforming previous methods on the ADReSSo 2021 test set.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3566615","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dementia represents a global public health concern, with the early detection of Alzheimer's disease, the most prevalent form of dementia, being of paramount importance. Given the limited availability of suitable biomarkers, research has shown that early cognitive impairment can be identified through patients' spoken language. This paper presents a multi-modal system for automatic Alzheimer's disease detection using speech. The system has been trained on spoken recordings of healthy individuals and Alzheimer's patients describing an image, a task requiring linguistic and cognitive skills. Built on fine-tuned advanced Large Language Models, audio feature extractors, and classifiers, the system, after an extensive comparison of single and multi-modal architectures, achieves optimal results with the combination of Mistral-7B, VGGish, and Support Vector Classifier, outperforming previous methods on the ADReSSo 2021 test set.

整合微调LLM与声学特征,增强阿尔茨海默病的检测。
痴呆症是一个全球性的公共卫生问题,早期发现阿尔茨海默病(最普遍的痴呆症形式)至关重要。考虑到合适的生物标志物的可用性有限,研究表明,早期认知障碍可以通过患者的口语来识别。提出了一种基于语音的多模态阿尔茨海默病自动检测系统。该系统已经接受了健康个体和阿尔茨海默病患者描述图像的录音训练,这是一项需要语言和认知技能的任务。该系统建立在经过精细调整的高级大型语言模型、音频特征提取器和分类器之上,经过对单模式和多模式架构的广泛比较,结合了Mistral-7B、VGGish和支持向量分类器,获得了最佳结果,在addresso 2021测试集上优于以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信