{"title":"TGFBR2 as a prognostic marker and therapeutic target in benzo(a)pyrene-associated esophageal cancer: insights from multi-omics analysis.","authors":"Hongying Zhou, Xiaochun Lv, Yun Chen, Zhiquan Qin","doi":"10.1080/15376516.2025.2495930","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Benzo(a)pyrene (BaP) is an environmental pollutant linked to several cancers, including esophageal cancer (ESCA). Understanding its impact on gene expression and associated molecular pathways in ESCA is crucial for developing targeted therapies.</p><p><strong>Methods: </strong>Using the TCGA-ESCA dataset, we identified differentially expressed genes (DEGs) related to BaP exposure. Enrichment analyses and protein-protein interaction (PPI) network construction were performed to explore the biological significance of these DEGs. Molecular docking studies assessed the interactions between BaP and core subnetwork genes. Survival analysis and immune cell infiltration analysis were conducted to evaluate the prognostic value of TGFBR2. Chemotherapy drug sensitivity was analyzed based on TGFBR2 expression levels.</p><p><strong>Results: </strong>We identified 5757 DEGs in ESCA, with 33 genes linked to both BaP exposure and ESCA. Enrichment analyses revealed significant pathways, including p53 signaling and apoptosis. Key genes (ACTB, CDKN2A, TGFBR2) were verified for their differential expression. Molecular docking demonstrated strong BaP binding to several core proteins. High TGFBR2 expression correlated with better survival, enhanced immune infiltration, and altered sensitivity to chemotherapeutic agents.</p><p><strong>Conclusion: </strong>Our study highlights the molecular mechanisms by which BaP influences ESCA, with TGFBR2 emerging as a potential prognostic marker and therapeutic target. These insights pave the way for personalized treatments in BaP-induced esophageal carcinogenesis.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-14"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2495930","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Benzo(a)pyrene (BaP) is an environmental pollutant linked to several cancers, including esophageal cancer (ESCA). Understanding its impact on gene expression and associated molecular pathways in ESCA is crucial for developing targeted therapies.
Methods: Using the TCGA-ESCA dataset, we identified differentially expressed genes (DEGs) related to BaP exposure. Enrichment analyses and protein-protein interaction (PPI) network construction were performed to explore the biological significance of these DEGs. Molecular docking studies assessed the interactions between BaP and core subnetwork genes. Survival analysis and immune cell infiltration analysis were conducted to evaluate the prognostic value of TGFBR2. Chemotherapy drug sensitivity was analyzed based on TGFBR2 expression levels.
Results: We identified 5757 DEGs in ESCA, with 33 genes linked to both BaP exposure and ESCA. Enrichment analyses revealed significant pathways, including p53 signaling and apoptosis. Key genes (ACTB, CDKN2A, TGFBR2) were verified for their differential expression. Molecular docking demonstrated strong BaP binding to several core proteins. High TGFBR2 expression correlated with better survival, enhanced immune infiltration, and altered sensitivity to chemotherapeutic agents.
Conclusion: Our study highlights the molecular mechanisms by which BaP influences ESCA, with TGFBR2 emerging as a potential prognostic marker and therapeutic target. These insights pave the way for personalized treatments in BaP-induced esophageal carcinogenesis.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.