{"title":"Decreased Fecal Nicotinamide and Increased Bacterial Nicotinamidase Gene Expression in Ulcerative Colitis Patients.","authors":"Keiya Aoyama, Ryodai Yamamura, Takehiko Katsurada, Tomohiro Shimizu, Daisuke Takahashi, Eiji Kondo, Norimasa Iwasaki, Akiko Tamakoshi, Tomoyoshi Soga, Shinji Fukuda, Masahiro Sonoshita, Naoya Sakamoto","doi":"10.1093/ibd/izaf092","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Ulcerative colitis (UC) is significantly linked with gut microbiota, which is essential for maintaining gut health. Their metabolites mitigate gut inflammation and bolster barrier function. Among these metabolites, we focused on vitamin B3, which has been reported to improve the pathogenesis of UC in mice. This study aimed to compare fecal vitamin B3 and gut microbiota between non-UC and UC patients.</p><p><strong>Methods: </strong>We assessed fecal metabolites and gut microbiota in 71 UC patients (UC group) and 72 non-UC patients (non-UC group) matched by sex and age in 10-year intervals. Fecal samples were collected and metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry. Bacterial DNA was extracted for 16S rRNA gene sequencing. We analyzed fecal nicotinamide levels and gut microbiota composition, employing statistical adjustments for confounding factors.</p><p><strong>Results: </strong>We found that the UC group exhibited significantly lower fecal nicotinamide levels and α-diversity (Shannon index) compared to the non-UC group. The relative abundance of bacterial genera such as Treponema, UCG-002, and Fusicatenibacter was decreased, while Sellimonas, Fournierella, and Oscillospira were increased in the UC group. Moreover, a negative correlation was observed between Sellimonas abundance and fecal nicotinamide levels in the UC group. Additionally, the UC group showed higher expression of a bacterial gene encoding nicotinamidase compared to the non-UC group.</p><p><strong>Conclusions: </strong>These findings suggest that gut microbiota dysbiosis contributes to reduced vitamin B3 metabolism in UC patients. The study highlights the potential of replenishing vitamin B3 metabolic pathways as a novel therapeutic approach for UC treatment.</p>","PeriodicalId":13623,"journal":{"name":"Inflammatory Bowel Diseases","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammatory Bowel Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ibd/izaf092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objective: Ulcerative colitis (UC) is significantly linked with gut microbiota, which is essential for maintaining gut health. Their metabolites mitigate gut inflammation and bolster barrier function. Among these metabolites, we focused on vitamin B3, which has been reported to improve the pathogenesis of UC in mice. This study aimed to compare fecal vitamin B3 and gut microbiota between non-UC and UC patients.
Methods: We assessed fecal metabolites and gut microbiota in 71 UC patients (UC group) and 72 non-UC patients (non-UC group) matched by sex and age in 10-year intervals. Fecal samples were collected and metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry. Bacterial DNA was extracted for 16S rRNA gene sequencing. We analyzed fecal nicotinamide levels and gut microbiota composition, employing statistical adjustments for confounding factors.
Results: We found that the UC group exhibited significantly lower fecal nicotinamide levels and α-diversity (Shannon index) compared to the non-UC group. The relative abundance of bacterial genera such as Treponema, UCG-002, and Fusicatenibacter was decreased, while Sellimonas, Fournierella, and Oscillospira were increased in the UC group. Moreover, a negative correlation was observed between Sellimonas abundance and fecal nicotinamide levels in the UC group. Additionally, the UC group showed higher expression of a bacterial gene encoding nicotinamidase compared to the non-UC group.
Conclusions: These findings suggest that gut microbiota dysbiosis contributes to reduced vitamin B3 metabolism in UC patients. The study highlights the potential of replenishing vitamin B3 metabolic pathways as a novel therapeutic approach for UC treatment.
期刊介绍:
Inflammatory Bowel Diseases® supports the mission of the Crohn''s & Colitis Foundation by bringing the most impactful and cutting edge clinical topics and research findings related to inflammatory bowel diseases to clinicians and researchers working in IBD and related fields. The Journal is committed to publishing on innovative topics that influence the future of clinical care, treatment, and research.