Robert S Rosenson, Ashley M Tate, Olga G Grushko, Dilna Damodaran, Qinzhong Chen, Michael Boffa, Marlys Koschinsky, Jagat Narula, Sascha N Goonewardena
{"title":"Lipoprotein (a) integrates monocyte-mediated thrombosis and inflammation in atherosclerotic cardiovascular disease.","authors":"Robert S Rosenson, Ashley M Tate, Olga G Grushko, Dilna Damodaran, Qinzhong Chen, Michael Boffa, Marlys Koschinsky, Jagat Narula, Sascha N Goonewardena","doi":"10.1016/j.jlr.2025.100820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Elevated levels of lipoprotein (a) [Lp(a)], an apolipoprotein B particle, are causally linked to atherosclerotic cardiovascular disease (ASCVD). Lp(a) is thought to promote ASCVD through multiple mechanisms, including its effects on cholesterol transport, inflammation, and thrombosis.</p><p><strong>Objective: </strong>Define the mechanisms that integrate Lp(a)-mediated cholesterol accumulation, inflammation, and thrombosis.</p><p><strong>Methods: </strong>In this study, we employed systems biology approaches, including proteomics, transcriptomics, and mass cytometry, to define the immune cellular and molecular phenotypes in ASCVD subjects with high and low Lp(a) levels and the molecular mechanisms through which Lp(a) mediates monocyte-driven inflammation and thrombosis.</p><p><strong>Results: </strong>In 64 stable ASCVD subjects (41 with high Lp(a) [median Lp(a) 228.7 nmol/L] and 23 with low Lp(a) [median Lp(a) 17.8 nmol/L]), we found that circulating markers of inflammation (CCL28, IL-17D) and vascular dysfunction (tissue factor [TF]; 6.4 vs 5.7 normalized protein expression (NPX); p=0.01) were elevated in subjects with high Lp(a) levels compared with those with low Lp(a) levels. Although total monocyte and hsCRP levels were similar between the groups, CD14+ monocytes from ASCVD subjects with an elevated Lp(a) were primed and expressed more TF at baseline and in response to stress. Mechanistically, we found that Lp(a) itself can activate monocytes through Toll-like receptor 2 (TLR2) and nuclear factor kappa B (NFκB) signaling, driving both the induction of TF and TF activity.</p><p><strong>Conclusions: </strong>Overall, these studies are the first to link Lp(a) to monocyte-mediated inflammation and thrombosis. They demonstrate a novel mechanism through TLR2, NFκB, and monocyte TF by which Lp(a) amplifies immunothrombotic risk.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100820"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100820","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Elevated levels of lipoprotein (a) [Lp(a)], an apolipoprotein B particle, are causally linked to atherosclerotic cardiovascular disease (ASCVD). Lp(a) is thought to promote ASCVD through multiple mechanisms, including its effects on cholesterol transport, inflammation, and thrombosis.
Objective: Define the mechanisms that integrate Lp(a)-mediated cholesterol accumulation, inflammation, and thrombosis.
Methods: In this study, we employed systems biology approaches, including proteomics, transcriptomics, and mass cytometry, to define the immune cellular and molecular phenotypes in ASCVD subjects with high and low Lp(a) levels and the molecular mechanisms through which Lp(a) mediates monocyte-driven inflammation and thrombosis.
Results: In 64 stable ASCVD subjects (41 with high Lp(a) [median Lp(a) 228.7 nmol/L] and 23 with low Lp(a) [median Lp(a) 17.8 nmol/L]), we found that circulating markers of inflammation (CCL28, IL-17D) and vascular dysfunction (tissue factor [TF]; 6.4 vs 5.7 normalized protein expression (NPX); p=0.01) were elevated in subjects with high Lp(a) levels compared with those with low Lp(a) levels. Although total monocyte and hsCRP levels were similar between the groups, CD14+ monocytes from ASCVD subjects with an elevated Lp(a) were primed and expressed more TF at baseline and in response to stress. Mechanistically, we found that Lp(a) itself can activate monocytes through Toll-like receptor 2 (TLR2) and nuclear factor kappa B (NFκB) signaling, driving both the induction of TF and TF activity.
Conclusions: Overall, these studies are the first to link Lp(a) to monocyte-mediated inflammation and thrombosis. They demonstrate a novel mechanism through TLR2, NFκB, and monocyte TF by which Lp(a) amplifies immunothrombotic risk.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.