On factors that influence deep learning-based dose prediction of head and neck tumors.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ruochen Gao, Prerak Mody, Chinmay Rao, Frank Dankers, Marius Staring
{"title":"On factors that influence deep learning-based dose prediction of head and neck tumors.","authors":"Ruochen Gao, Prerak Mody, Chinmay Rao, Frank Dankers, Marius Staring","doi":"10.1088/1361-6560/adcfeb","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>This study investigates key factors influencing deep learning-based dose prediction models for head and neck cancer radiation therapy. The goal is to evaluate model accuracy, robustness, and computational efficiency, and to identify key components necessary for optimal performance.<i>Approach.</i>We systematically analyze the impact of input and dose grid resolution, input type, loss function, model architecture, and noise on model performance. Two datasets are used: a public dataset (OpenKBP) and an in-house clinical dataset. Model performance is primarily evaluated using two metrics: dose score and dose-volume histogram (DVH) score.<i>Main results.</i>High-resolution inputs improve prediction accuracy (dose score and DVH score) by 8.6%-13.5% compared to low resolution. Using a combination of CT, planning target volumes, and organs-at-risk as input significantly enhances accuracy, with improvements of 57.4%-86.8% over using CT alone. Integrating mean absolute error (MAE) loss with value-based and criteria-based DVH loss functions further boosts DVH score by 7.2%-7.5% compared to MAE loss alone. In the robustness analysis, most models show minimal degradation under Poisson noise (0-0.3 Gy) but are more susceptible to adversarial noise (0.2-7.8 Gy). Notably, certain models, such as SwinUNETR, demonstrate superior robustness against adversarial perturbations.<i>Significance.</i>These findings highlight the importance of optimizing deep learning models and provide valuable guidance for achieving more accurate and reliable radiotherapy dose prediction.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adcfeb","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.This study investigates key factors influencing deep learning-based dose prediction models for head and neck cancer radiation therapy. The goal is to evaluate model accuracy, robustness, and computational efficiency, and to identify key components necessary for optimal performance.Approach.We systematically analyze the impact of input and dose grid resolution, input type, loss function, model architecture, and noise on model performance. Two datasets are used: a public dataset (OpenKBP) and an in-house clinical dataset. Model performance is primarily evaluated using two metrics: dose score and dose-volume histogram (DVH) score.Main results.High-resolution inputs improve prediction accuracy (dose score and DVH score) by 8.6%-13.5% compared to low resolution. Using a combination of CT, planning target volumes, and organs-at-risk as input significantly enhances accuracy, with improvements of 57.4%-86.8% over using CT alone. Integrating mean absolute error (MAE) loss with value-based and criteria-based DVH loss functions further boosts DVH score by 7.2%-7.5% compared to MAE loss alone. In the robustness analysis, most models show minimal degradation under Poisson noise (0-0.3 Gy) but are more susceptible to adversarial noise (0.2-7.8 Gy). Notably, certain models, such as SwinUNETR, demonstrate superior robustness against adversarial perturbations.Significance.These findings highlight the importance of optimizing deep learning models and provide valuable guidance for achieving more accurate and reliable radiotherapy dose prediction.

影响基于深度学习的头颈部肿瘤剂量预测的因素研究。
\textit{目标。}本研究探讨了影响基于深度学习的头颈癌放疗剂量预测模型的关键因素。目标是评估模型的准确性、鲁棒性和计算效率,并确定最佳性能所需的关键组件。&#xD;\\&#\textit{xD};我们系统地分析了输入和剂量网格分辨率、输入类型、损失函数、模型架构和噪声对模型性能的影响。使用两个数据集:公共数据集(OpenKBP)和内部临床数据集(LUMC)。模型性能主要使用两个指标进行评估:剂量评分和剂量-体积直方图(DVH)评分。&#xD;\\\textit{主要结果}&#xD;与低分辨率相比,高分辨率输入可将预测精度(剂量评分和DVH评分)提高8.6- 13.5%。结合CT、计划靶体积(ptv)和危险器官(OARs)作为输入,可以显著提高准确率,比单独使用CT提高57.4% ~ 86.8%。与单独使用平均绝对误差(MAE)损失相比,将平均绝对误差(MAE)损失与基于值和基于标准的DVH损失函数相结合,可以进一步提高DVH评分7.2- 7.5%。在鲁棒性分析中,大多数模型在泊松噪声(0—0.3 Gy)下表现出最小的退化,但更容易受到对抗噪声(0.2—7.8 Gy)的影响。值得注意的是,某些模型,如SwinUNETR,对对抗性扰动表现出优越的鲁棒性。&#xD;\\&#xD;\textit{意义。} &#xD;这些发现突出了优化深度学习模型的重要性,并为实现更准确可靠的放疗剂量预测提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信