Automated Detection of Kaposi Sarcoma-Associated Herpesvirus-Infected Cells in Immunohistochemical Images of Skin Biopsies.

IF 3.2 Q2 ONCOLOGY
JCO Global Oncology Pub Date : 2025-04-01 Epub Date: 2025-04-16 DOI:10.1200/GO-24-00536
Iftak Hussain, Juan Boza, Robert Lukande, Racheal Ayanga, Aggrey Semeere, Ethel Cesarman, Jeffrey Martin, Toby Maurer, David Erickson
{"title":"Automated Detection of Kaposi Sarcoma-Associated Herpesvirus-Infected Cells in Immunohistochemical Images of Skin Biopsies.","authors":"Iftak Hussain, Juan Boza, Robert Lukande, Racheal Ayanga, Aggrey Semeere, Ethel Cesarman, Jeffrey Martin, Toby Maurer, David Erickson","doi":"10.1200/GO-24-00536","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Immunohistochemical staining for the antigen of Kaposi sarcoma (KS)-associated herpesvirus, latency-associated nuclear antigen (LANA), is helpful in diagnosing KS. A challenge lies in distinguishing anti-LANA-positive cells from morphologically similar brown counterparts. This work aims to develop an automated framework for localization and quantification of LANA positivity in whole-slide images (WSI) of skin biopsies.</p><p><strong>Methods: </strong>The proposed framework leverages weakly supervised multiple-instance learning (MIL) to reduce false-positive predictions. A novel morphology-based slide aggregation method is introduced to improve accuracy. The framework generates interpretable heatmaps for cell localization and provides quantitative values for the percentage of positive tiles. The framework was trained and tested with a KS pathology data set prepared from skin biopsies of KS-suspected patients in Uganda.</p><p><strong>Results: </strong>The developed MIL framework achieved an area under the receiver operating characteristic curve of 0.99, with a sensitivity of 98.15% and specificity of 96.00% in predicting anti-LANA-positive WSIs in a test data set.</p><p><strong>Conclusion: </strong>The framework shows promise for the automated detection of LANA in skin biopsies, offering a reliable and accurate tool for identifying anti-LANA-positive cells. This method may be especially impactful in resource-limited areas that lack trained pathologists, potentially improving diagnostic capabilities in settings with limited access to expert analysis.</p>","PeriodicalId":14806,"journal":{"name":"JCO Global Oncology","volume":"11 ","pages":"e2400536"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Global Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/GO-24-00536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Immunohistochemical staining for the antigen of Kaposi sarcoma (KS)-associated herpesvirus, latency-associated nuclear antigen (LANA), is helpful in diagnosing KS. A challenge lies in distinguishing anti-LANA-positive cells from morphologically similar brown counterparts. This work aims to develop an automated framework for localization and quantification of LANA positivity in whole-slide images (WSI) of skin biopsies.

Methods: The proposed framework leverages weakly supervised multiple-instance learning (MIL) to reduce false-positive predictions. A novel morphology-based slide aggregation method is introduced to improve accuracy. The framework generates interpretable heatmaps for cell localization and provides quantitative values for the percentage of positive tiles. The framework was trained and tested with a KS pathology data set prepared from skin biopsies of KS-suspected patients in Uganda.

Results: The developed MIL framework achieved an area under the receiver operating characteristic curve of 0.99, with a sensitivity of 98.15% and specificity of 96.00% in predicting anti-LANA-positive WSIs in a test data set.

Conclusion: The framework shows promise for the automated detection of LANA in skin biopsies, offering a reliable and accurate tool for identifying anti-LANA-positive cells. This method may be especially impactful in resource-limited areas that lack trained pathologists, potentially improving diagnostic capabilities in settings with limited access to expert analysis.

皮肤活检免疫组化图像中卡波西肉瘤相关疱疹病毒感染细胞的自动检测
目的:免疫组化染色检测卡波西肉瘤(KS)相关疱疹病毒抗原潜伏期相关核抗原(LANA),有助于KS的诊断。一个挑战在于区分抗lana阳性细胞与形态相似的棕色对应物。这项工作的目的是开发一个自动框架,用于定位和定量LANA阳性的全幻灯片图像(WSI)的皮肤活检。方法:提出的框架利用弱监督多实例学习(MIL)来减少假阳性预测。为了提高精度,提出了一种新的基于形态的滑动聚合方法。该框架为细胞定位生成可解释的热图,并提供阳性瓦片百分比的定量值。对该框架进行了培训,并使用从乌干达疑似KS患者的皮肤活检中获得的KS病理数据集进行了测试。结果:建立的MIL框架在受试者工作特征曲线下面积为0.99,预测抗lana阳性wsi的敏感性为98.15%,特异性为96.00%。结论:该框架有望在皮肤活检中自动检测LANA,为识别抗LANA阳性细胞提供可靠和准确的工具。这种方法在缺乏训练有素的病理学家的资源有限的地区可能特别有效,可能会在获得专家分析的机会有限的情况下提高诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCO Global Oncology
JCO Global Oncology Medicine-Oncology
CiteScore
6.70
自引率
6.70%
发文量
310
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信