{"title":"Covering One Point Process with Another.","authors":"Frankie Higgs, Mathew D Penrose, Xiaochuan Yang","doi":"10.1007/s11009-025-10165-7","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <mrow><msub><mi>X</mi> <mn>1</mn></msub> <mo>,</mo> <msub><mi>X</mi> <mn>2</mn></msub> <mo>,</mo> <mo>…</mo></mrow> </math> and <math> <mrow><msub><mi>Y</mi> <mn>1</mn></msub> <mo>,</mo> <msub><mi>Y</mi> <mn>2</mn></msub> <mo>,</mo> <mo>…</mo></mrow> </math> be i.i.d. random uniform points in a bounded domain <math><mrow><mi>A</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> with smooth or polygonal boundary. Given <math><mrow><mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>,</mo> <mi>k</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> , define the <i>two-sample k-coverage threshold</i> <math><msub><mi>R</mi> <mrow><mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>,</mo> <mi>k</mi></mrow> </msub> </math> to be the smallest <i>r</i> such that each point of <math><mrow><mo>{</mo> <msub><mi>Y</mi> <mn>1</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>Y</mi> <mi>m</mi></msub> <mo>}</mo></mrow> </math> is covered at least <i>k</i> times by the disks of radius <i>r</i> centred on <math> <mrow><msub><mi>X</mi> <mn>1</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>X</mi> <mi>n</mi></msub> </mrow> </math> . We obtain the limiting distribution of <math><msub><mi>R</mi> <mrow><mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>,</mo> <mi>k</mi></mrow> </msub> </math> as <math><mrow><mi>n</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> with <math><mrow><mi>m</mi> <mo>=</mo> <mi>m</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>∼</mo> <mi>τ</mi> <mi>n</mi></mrow> </math> for some constant <math><mrow><mi>τ</mi> <mo>></mo> <mn>0</mn></mrow> </math> , with <i>k</i> fixed. If <i>A</i> has unit area, then <math><mrow><mi>n</mi> <mi>π</mi> <msubsup><mi>R</mi> <mrow><mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>,</mo> <mn>1</mn></mrow> <mn>2</mn></msubsup> <mo>-</mo> <mo>log</mo> <mi>n</mi></mrow> </math> is asymptotically Gumbel distributed with scale parameter 1 and location parameter <math><mrow><mo>log</mo> <mi>τ</mi></mrow> </math> . For <math><mrow><mi>k</mi> <mo>></mo> <mn>2</mn></mrow> </math> , we find that <math><mrow><mi>n</mi> <mi>π</mi> <msubsup><mi>R</mi> <mrow><mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>,</mo> <mi>k</mi></mrow> <mn>2</mn></msubsup> <mo>-</mo> <mo>log</mo> <mi>n</mi> <mo>-</mo> <mrow><mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>-</mo> <mn>3</mn> <mo>)</mo></mrow> <mo>log</mo> <mo>log</mo> <mi>n</mi></mrow> </math> is asymptotically Gumbel with scale parameter 2 and a more complicated location parameter involving the perimeter of <i>A</i>; boundary effects dominate when <math><mrow><mi>k</mi> <mo>></mo> <mn>2</mn></mrow> </math> . For <math><mrow><mi>k</mi> <mo>=</mo> <mn>2</mn></mrow> </math> the limiting cdf is a two-component extreme value distribution with scale parameters 1 and 2. We also give analogous results for higher dimensions, where the boundary effects dominate for all <i>k</i>.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"27 2","pages":"40"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-025-10165-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be i.i.d. random uniform points in a bounded domain with smooth or polygonal boundary. Given , define the two-sample k-coverage threshold to be the smallest r such that each point of is covered at least k times by the disks of radius r centred on . We obtain the limiting distribution of as with for some constant , with k fixed. If A has unit area, then is asymptotically Gumbel distributed with scale parameter 1 and location parameter . For , we find that is asymptotically Gumbel with scale parameter 2 and a more complicated location parameter involving the perimeter of A; boundary effects dominate when . For the limiting cdf is a two-component extreme value distribution with scale parameters 1 and 2. We also give analogous results for higher dimensions, where the boundary effects dominate for all k.
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes