{"title":"Male Caenorhabditis elegans optimizes avoidance behavior against acute and chronic stress for successful mating with hermaphrodites.","authors":"Sayaka Hori, Shohei Mitani","doi":"10.1186/s40851-025-00250-7","DOIUrl":null,"url":null,"abstract":"<p><p>The optimization of avoidance behaviors in response to stress is an instinctual life function universally present in animals. In many sexually dimorphic animals, males exhibit higher stress resistance than females, but there have been no reports of comparative studies on stress resistance in sexually dimorphic hermaphrodites capable of reproducing alone. In the present study, we aimed to utilize a reversal/turn behavioral choice to conduct a comparative analysis of optimized avoidance behavior patterns in hermaphrodite and male Caenorhabditis elegans. We found that C. elegans males showed greater resistance to physical movement under acute stress and to lifespan reduction under chronic stress than C. elegans hermaphrodites. Interestingly, males exhibited a stronger avoidance behavior pattern known as \"turn\" than did the hermaphrodites, even in response to mild acute stress stimuli, to which they responded as if they had been exposed to strong stimuli. Stress conditions can lead to unsuccessful mating in C. elegans, and exaggerated stress avoidance in males may have biological significance for successful mating. This sexual dimorphism in avoidance behavior optimization was attributed to neural circuits downstream of the AIB neurons, the center of turn behavior, suggesting the presence of a novel mechanism distinct from previously reported neural and molecular mechanisms of avoidance behavior optimization.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"11 1","pages":"4"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-025-00250-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of avoidance behaviors in response to stress is an instinctual life function universally present in animals. In many sexually dimorphic animals, males exhibit higher stress resistance than females, but there have been no reports of comparative studies on stress resistance in sexually dimorphic hermaphrodites capable of reproducing alone. In the present study, we aimed to utilize a reversal/turn behavioral choice to conduct a comparative analysis of optimized avoidance behavior patterns in hermaphrodite and male Caenorhabditis elegans. We found that C. elegans males showed greater resistance to physical movement under acute stress and to lifespan reduction under chronic stress than C. elegans hermaphrodites. Interestingly, males exhibited a stronger avoidance behavior pattern known as "turn" than did the hermaphrodites, even in response to mild acute stress stimuli, to which they responded as if they had been exposed to strong stimuli. Stress conditions can lead to unsuccessful mating in C. elegans, and exaggerated stress avoidance in males may have biological significance for successful mating. This sexual dimorphism in avoidance behavior optimization was attributed to neural circuits downstream of the AIB neurons, the center of turn behavior, suggesting the presence of a novel mechanism distinct from previously reported neural and molecular mechanisms of avoidance behavior optimization.
Zoological LettersAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.60
自引率
0.00%
发文量
12
审稿时长
10 weeks
期刊介绍:
Zoological Letters is an open access journal that publishes new and important findings in the zoological sciences. As a sister journal to Zoological Science, Zoological Letters covers a wide range of basic fields of zoology, from taxonomy to bioinformatics. We also welcome submissions of paleontology reports as part of our effort to contribute to the development of new perspectives in evolutionary zoology. Our goal is to serve as a global publishing forum for fundamental researchers in all fields of zoology.