Exoskeleton-guided passive movement elicits standardized EEG patterns for generalizable BCIs in stroke rehabilitation.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Xinyi Zhang, Lanfang Xie, Wanting Liu, Shaoying Liang, Liyao Huang, Mingjun Wang, Lingling Tian, Li Zhang, Zhen Liang, Hai Li, Gan Huang
{"title":"Exoskeleton-guided passive movement elicits standardized EEG patterns for generalizable BCIs in stroke rehabilitation.","authors":"Xinyi Zhang, Lanfang Xie, Wanting Liu, Shaoying Liang, Liyao Huang, Mingjun Wang, Lingling Tian, Li Zhang, Zhen Liang, Hai Li, Gan Huang","doi":"10.1186/s12984-025-01627-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain-computer interfaces (BCIs) hold significant potential for post-stroke motor recovery, yet active movement-based BCIs face limitations in generalization due to inter-subject variability. This study investigates passive movement-based BCIs, driven by exoskeleton-guided rehabilitation, to address these challenges by evaluating electroencephalogram (EEG) responses and algorithmic generalization in both healthy subjects and stroke patients.</p><p><strong>Methods: </strong>EEG signals were recorded from 20 healthy subjects and 10 stroke patients during voluntary and passive hand movements. Time and time-frequency domain analyses were performed to examine the event-related potential (ERP), event-related desynchronization (ERD), and synchronization (ERS) patterns. The performance of two BCI algorithms, Common Spatial Patterns (CSP) and EEGNet, was evaluated in both within-subject and cross-subject decoding tasks.</p><p><strong>Results: </strong>Time-domain and time-frequency analyses revealed that passive movements elicited stronger, more consistent ERPs in healthy subjects, particularly in bilateral motor cortices (contralateral: <math><mrow><mo>-</mo> <mn>7.29</mn> <mo>±</mo> <mn>4.51</mn></mrow> </math>  μV; ipsilateral: <math><mrow><mo>-</mo> <mn>4.33</mn> <mo>±</mo> <mn>3.69</mn></mrow> </math>  μV). Stroke patients exhibited impaired mu/beta ERD/ERS in the affected hemisphere during voluntary movements but demonstrated EEG patterns during passive movements resembling those of healthy subjects. Machine learning evaluation highlighted EEGNet's superior performance, achieving 84.19% accuracy in classifying affected vs. unaffected movements in patients, surpassing healthy subject left-right discrimination (58.38%). Cross-subject decoding further validated passive movement efficacy, with EEGNet attaining 86.00% (healthy) and 72.63% (stroke) accuracy, outperforming traditional CSP methods.</p><p><strong>Conclusions: </strong>These findings underscore that passive movement elicits consistent neural responses, thereby enhancing the generalizability of decoding algorithms for stroke patients. By integrating exoskeleton-evoked proprioceptive feedback, this paradigm reduces inter-subject variability and improves clinical feasibility. Future work should explore the application of exoskeletons in the combination of active and passive movement for stroke rehabilitation.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"97"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01627-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Brain-computer interfaces (BCIs) hold significant potential for post-stroke motor recovery, yet active movement-based BCIs face limitations in generalization due to inter-subject variability. This study investigates passive movement-based BCIs, driven by exoskeleton-guided rehabilitation, to address these challenges by evaluating electroencephalogram (EEG) responses and algorithmic generalization in both healthy subjects and stroke patients.

Methods: EEG signals were recorded from 20 healthy subjects and 10 stroke patients during voluntary and passive hand movements. Time and time-frequency domain analyses were performed to examine the event-related potential (ERP), event-related desynchronization (ERD), and synchronization (ERS) patterns. The performance of two BCI algorithms, Common Spatial Patterns (CSP) and EEGNet, was evaluated in both within-subject and cross-subject decoding tasks.

Results: Time-domain and time-frequency analyses revealed that passive movements elicited stronger, more consistent ERPs in healthy subjects, particularly in bilateral motor cortices (contralateral: - 7.29 ± 4.51  μV; ipsilateral: - 4.33 ± 3.69  μV). Stroke patients exhibited impaired mu/beta ERD/ERS in the affected hemisphere during voluntary movements but demonstrated EEG patterns during passive movements resembling those of healthy subjects. Machine learning evaluation highlighted EEGNet's superior performance, achieving 84.19% accuracy in classifying affected vs. unaffected movements in patients, surpassing healthy subject left-right discrimination (58.38%). Cross-subject decoding further validated passive movement efficacy, with EEGNet attaining 86.00% (healthy) and 72.63% (stroke) accuracy, outperforming traditional CSP methods.

Conclusions: These findings underscore that passive movement elicits consistent neural responses, thereby enhancing the generalizability of decoding algorithms for stroke patients. By integrating exoskeleton-evoked proprioceptive feedback, this paradigm reduces inter-subject variability and improves clinical feasibility. Future work should explore the application of exoskeletons in the combination of active and passive movement for stroke rehabilitation.

外骨骼引导的被动运动为脑卒中康复中的通用脑机接口提供标准化的脑电图模式。
背景:脑机接口(bci)在卒中后运动恢复中具有重要的潜力,但由于受试者间的可变性,基于主动运动的脑机接口在推广方面存在局限性。本研究调查了由外骨骼引导康复驱动的基于被动运动的脑机接口,通过评估健康受试者和脑卒中患者的脑电图(EEG)反应和算法泛化来解决这些挑战。方法:记录20例健康受试者和10例脑卒中患者主动和被动手部运动时的脑电图信号。时间和时间-频域分析用于检查事件相关电位(ERP)、事件相关去同步(ERD)和同步(ERS)模式。两种脑机接口算法,共同空间模式(CSP)和EEGNet,在主题内和跨主题解码任务中的性能进行了评估。结果:时域和时频分析显示,健康受试者被动运动诱发的erp更强、更一致,尤其是在双侧运动皮层(对侧:- 7.29±4.51 μV;同侧:- 4.33±3.69 μV)。脑卒中患者在自主运动时表现出受影响半球的mu/ β ERD/ERS受损,但在被动运动时表现出与健康受试者相似的脑电图模式。机器学习评估突出了EEGNet的优越性能,在区分患者受影响和未受影响的运动方面达到了84.19%的准确率,超过了健康受试者的左右判别(58.38%)。跨受试者解码进一步验证了被动运动的有效性,EEGNet达到86.00%(健康)和72.63%(中风)的准确率,优于传统的CSP方法。结论:这些发现强调了被动运动引起一致的神经反应,从而增强了脑卒中患者解码算法的通用性。通过整合外骨骼诱发的本体感受反馈,这种模式减少了受试者间的可变性,提高了临床可行性。未来的工作应探索外骨骼在脑卒中主动与被动运动结合中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信