On Flipping Edge Sets in Unique Sink Orientations.

IF 0.6 4区 数学 Q3 MATHEMATICS
Graphs and Combinatorics Pub Date : 2025-01-01 Epub Date: 2025-04-25 DOI:10.1007/s00373-025-02929-2
Michaela Borzechowski, Simon Weber
{"title":"On Flipping Edge Sets in Unique Sink Orientations.","authors":"Michaela Borzechowski, Simon Weber","doi":"10.1007/s00373-025-02929-2","DOIUrl":null,"url":null,"abstract":"<p><p>A <i>unique sink orientation</i> (USO) is an orientation of the <i>n</i>-dimensional hypercube graph such that every non-empty face contains a unique sink. We consider the only known connected <i>flip graph</i> on USOs. This flip graph is based on the following theorem due to Schurr: given any <i>n</i>-dimensional USO and any one dimension  <math><mrow><mi>i</mi> <mo>∈</mo> <mo>[</mo> <mi>n</mi> <mo>]</mo></mrow> </math> , the set <math><msub><mi>E</mi> <mi>i</mi></msub> </math> of edges connecting vertices along dimension <i>i</i> can be decomposed into equivalence classes (so-called <i>phases</i>), such that flipping the direction of any <math><mrow><mi>S</mi> <mo>⊆</mo> <msub><mi>E</mi> <mi>i</mi></msub> </mrow> </math> yields another USO if and only if <i>S</i> is the union of some of these phases. In this paper we provide an algorithm to compute the phases of a given USO in <math><mrow><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>·</mo> <msup><mn>3</mn> <mi>n</mi></msup> <mo>)</mo></mrow> </math> time, significantly improving upon the previously known <math><mrow><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>·</mo> <msup><mn>4</mn> <mi>n</mi></msup> <mo>)</mo></mrow> </math> trivial algorithm. We also show that the phase containing a given edge can be flipped using only <i>poly</i>(<i>n</i>) space additional to the space required to store the USO. We contrast this by showing that given a boolean circuit of size <i>poly</i>(<i>n</i>) succinctly encoding an <i>n</i>-dimensional USO, it is <math><mi>PSPACE</mi></math> -complete to determine whether two given edges are in the same phase. Finally, we also prove some new results on the structure of phases.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"41 3","pages":"64"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-025-02929-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A unique sink orientation (USO) is an orientation of the n-dimensional hypercube graph such that every non-empty face contains a unique sink. We consider the only known connected flip graph on USOs. This flip graph is based on the following theorem due to Schurr: given any n-dimensional USO and any one dimension  i [ n ] , the set E i of edges connecting vertices along dimension i can be decomposed into equivalence classes (so-called phases), such that flipping the direction of any S E i yields another USO if and only if S is the union of some of these phases. In this paper we provide an algorithm to compute the phases of a given USO in O ( n · 3 n ) time, significantly improving upon the previously known O ( n · 4 n ) trivial algorithm. We also show that the phase containing a given edge can be flipped using only poly(n) space additional to the space required to store the USO. We contrast this by showing that given a boolean circuit of size poly(n) succinctly encoding an n-dimensional USO, it is PSPACE -complete to determine whether two given edges are in the same phase. Finally, we also prove some new results on the structure of phases.

关于唯一Sink方向的翻转边集。
唯一汇聚方向(USO)是n维超立方体图的一种方向,使得每个非空面都包含一个唯一汇聚。我们考虑USOs上唯一已知的连通翻转图。该翻转图基于如下Schurr定理:给定任意n维USO和任意一维i∈[n],沿i维连接顶点的边的集合E i可分解为等价类(即相),使得任意S的方向的翻转产生另一个USO,当且仅当S是其中一些相的并集。在本文中,我们提供了一种在O (n·3n)时间内计算给定USO的相位的算法,大大改进了之前已知的O (n·4n)平凡算法。我们还表明,除了存储USO所需的空间外,包含给定边缘的相位只能使用poly(n)空间进行翻转。我们通过表明给定一个大小为poly(n)的布尔电路简洁地编码一个n维USO来对比这一点,它是PSPACE完备的,以确定两个给定的边是否处于同一相位。最后,我们还证明了有关相结构的一些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信