Lamessa Dube Amente, Natalie T Mills, Thuc Duy Le, Elina Hyppönen, S Hong Lee
{"title":"A latent outcome variable approach for Mendelian randomization using the stochastic expectation maximization algorithm.","authors":"Lamessa Dube Amente, Natalie T Mills, Thuc Duy Le, Elina Hyppönen, S Hong Lee","doi":"10.1007/s00439-025-02739-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) is a widely used tool to uncover causal relationships between exposures and outcomes. However, existing MR methods can suffer from inflated type I error rates and biased causal effects in the presence of invalid instruments. Our proposed method enhances MR analysis by augmenting latent phenotypes of the outcome, explicitly disentangling horizontal and vertical pleiotropy effects. This allows for explicit assessment of the exclusion restriction assumption and iteratively refines causal estimates through the expectation-maximization algorithm. This approach offers a unique and potentially more precise framework compared to existing MR methods. We rigorously evaluate our method against established MR approaches across diverse simulation scenarios, including balanced and directional pleiotropy, as well as violations of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. Our findings consistently demonstrate superior performance of our method in terms of controlling type I error rates, bias, and robustness to genetic confounding, regardless of whether individual-level or summary data is used. Additionally, our method facilitates testing for directional horizontal pleiotropy and outperforms MR-Egger in this regard, while also effectively testing for violations of the InSIDE assumption. We apply our method to real data, demonstrating its effectiveness compared to traditional MR methods. This analysis reveals the causal effects of body mass index (BMI) on metabolic syndrome (MetS) and a composite MetS score calculated by the weighted sum of its component factors. While the causal relationship is consistent across most methods, our proposed method shows fewer violations of the exclusion restriction assumption, especially for MetS scores where horizontal pleiotropy persists and other methods suffer from inflation.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":"144 5","pages":"559-574"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-025-02739-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Mendelian randomization (MR) is a widely used tool to uncover causal relationships between exposures and outcomes. However, existing MR methods can suffer from inflated type I error rates and biased causal effects in the presence of invalid instruments. Our proposed method enhances MR analysis by augmenting latent phenotypes of the outcome, explicitly disentangling horizontal and vertical pleiotropy effects. This allows for explicit assessment of the exclusion restriction assumption and iteratively refines causal estimates through the expectation-maximization algorithm. This approach offers a unique and potentially more precise framework compared to existing MR methods. We rigorously evaluate our method against established MR approaches across diverse simulation scenarios, including balanced and directional pleiotropy, as well as violations of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. Our findings consistently demonstrate superior performance of our method in terms of controlling type I error rates, bias, and robustness to genetic confounding, regardless of whether individual-level or summary data is used. Additionally, our method facilitates testing for directional horizontal pleiotropy and outperforms MR-Egger in this regard, while also effectively testing for violations of the InSIDE assumption. We apply our method to real data, demonstrating its effectiveness compared to traditional MR methods. This analysis reveals the causal effects of body mass index (BMI) on metabolic syndrome (MetS) and a composite MetS score calculated by the weighted sum of its component factors. While the causal relationship is consistent across most methods, our proposed method shows fewer violations of the exclusion restriction assumption, especially for MetS scores where horizontal pleiotropy persists and other methods suffer from inflation.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.