Yi-Jin Wu, Yan-Rong Yang, Ya-Ling Yan, Han-Yinan Yang, Jun-Rong Du
{"title":"Targeting mitochondrial dysfunction: an innovative strategy for treating renal fibrosis.","authors":"Yi-Jin Wu, Yan-Rong Yang, Ya-Ling Yan, Han-Yinan Yang, Jun-Rong Du","doi":"10.1007/s11010-025-05297-w","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"4889-4906"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05297-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.