Targeting mitochondrial dysfunction: an innovative strategy for treating renal fibrosis.

IF 3.7 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-09-01 Epub Date: 2025-04-29 DOI:10.1007/s11010-025-05297-w
Yi-Jin Wu, Yan-Rong Yang, Ya-Ling Yan, Han-Yinan Yang, Jun-Rong Du
{"title":"Targeting mitochondrial dysfunction: an innovative strategy for treating renal fibrosis.","authors":"Yi-Jin Wu, Yan-Rong Yang, Ya-Ling Yan, Han-Yinan Yang, Jun-Rong Du","doi":"10.1007/s11010-025-05297-w","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"4889-4906"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05297-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.

靶向线粒体功能障碍:治疗肾纤维化的创新策略。
肾脏疾病,特别是终末期肾脏疾病的发病率和住院率显著增加,严重危及患者的健康。线粒体是细胞能量代谢的核心细胞器,其功能障碍可导致肾脏能量供应不足和氧化应激损伤,已成为全球性的公共卫生问题。研究表明,线粒体动力学、自噬、氧化应激调节和生物合成等线粒体质量控制机制的紊乱与肾纤维化(RF)的发生发展密切相关。RF是一个多细胞的病理过程,涉及足细胞的损伤和脱落、肾小管上皮细胞的转分化、成纤维细胞的活化、巨噬细胞的浸润,其中线粒体功能障碍起着重要作用。本文系统阐述了射频进展过程中线粒体损伤的分子机制,旨在为开发新的延缓射频进展的治疗策略提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信