{"title":"Roles for Exosomes from Various Cellular Sources in Spinal Cord Injury.","authors":"Wangnan Mao, Xinghao Liu, Chen Chen, Tongfu Luo, Zheng Yan, Lianguo Wu, Zhongcheng An","doi":"10.1007/s12035-025-05040-y","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a severe disorder characterized by regeneration challenges in the central nervous system (CNS), resulting in permanent paralysis, loss of sensation, and abnormal autonomic functions. The complex pathophysiology of SCI poses challenges to traditional treatments, highlighting the urgent need for novel treatment approaches. Exosomes have emerged as promising candidates for SCI therapy because of their ability to deliver a wide range of bioactive molecules, such as RNAs, proteins, and lipids, to target cells with minimal immunogenicity, which contribute to anti-inflammatory, anti-apoptotic, autophagic, angiogenic, neurogenic, and axon remodeling activities. In this study, we classified exosomes from different sources into four categories based on the characteristics of the donor cells (mesenchymal stem cells, neurogenic cells, immune cells, vascular-associated cells) and provided a detailed summary and discussion of the current research progress and future directions for each source. We also conducted an in-depth investigation into the applications of engineered exosomes in SCI therapy, focusing on their roles in drug delivery and combination with surface engineering technologies and tissue engineering strategies. Finally, the challenges and prospects of exosomal clinical applications in SCI repair are described.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05040-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is a severe disorder characterized by regeneration challenges in the central nervous system (CNS), resulting in permanent paralysis, loss of sensation, and abnormal autonomic functions. The complex pathophysiology of SCI poses challenges to traditional treatments, highlighting the urgent need for novel treatment approaches. Exosomes have emerged as promising candidates for SCI therapy because of their ability to deliver a wide range of bioactive molecules, such as RNAs, proteins, and lipids, to target cells with minimal immunogenicity, which contribute to anti-inflammatory, anti-apoptotic, autophagic, angiogenic, neurogenic, and axon remodeling activities. In this study, we classified exosomes from different sources into four categories based on the characteristics of the donor cells (mesenchymal stem cells, neurogenic cells, immune cells, vascular-associated cells) and provided a detailed summary and discussion of the current research progress and future directions for each source. We also conducted an in-depth investigation into the applications of engineered exosomes in SCI therapy, focusing on their roles in drug delivery and combination with surface engineering technologies and tissue engineering strategies. Finally, the challenges and prospects of exosomal clinical applications in SCI repair are described.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.