Distribution and speciation of Cu and Zn near spring barley (Hordeum vulgare) roots in digested sewage sludge-amended soil.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Jianting Feng, Ian T Burke, Felipe E Sepúlveda Olea, Xiaohui Chen, Douglas I Stewart
{"title":"Distribution and speciation of Cu and Zn near spring barley (Hordeum vulgare) roots in digested sewage sludge-amended soil.","authors":"Jianting Feng, Ian T Burke, Felipe E Sepúlveda Olea, Xiaohui Chen, Douglas I Stewart","doi":"10.1007/s10653-025-02482-0","DOIUrl":null,"url":null,"abstract":"<p><p>Risk management for agricultural use of digested sewage sludge requires better understanding of the behaviour and fate of contaminant metals in the plant root zone. A study employing rhizo-pot and plug-tray experiments was conducted to identify the zone near spring barley roots (Hordeum vulgare) where concentration and speciation of Cu and Zn are affected. Cu and Zn bonding environments in the root epidermis/cortex and vascular tissue were also identified. In the digested sludge-amended soil, spring barley absorbed Cu only from the immediate vicinity of the roots (<< 1 mm), but Zn was taken up from further afield (> 1 mm). In the rhizosphere Cu was predominately present as Cu(I) oxides or as Cu(II) absorbed/bonded to phosphate, whereas Zn was present as Zn(II) in inner-sphere complexes with metal oxide surfaces, as Zn(II) sulphides or Zn(II) bonded to/incorporated into carbonates. Cu taken-up by spring barley roots was largely sequestered in the root epidermis and/or cortex predominately in the coordination environments similar to those seen in the rhizosphere. Only a small proportion of the Cu was translocated into the vascular tissue (where it is in the same two bonding environments). Zn taken-up by spring barley roots was present as Zn(II) sulphides, Zn(II) absorbed to/incorporated into carbonates, or Zn(II)-organic complexes. Zn was readily translocated from roots to shoots. Better understanding of these differences in the mobility and uptake of Cu and Zn in sludge-amended agricultural soils could be used to undertake element specific risk assessments.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"172"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02482-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Risk management for agricultural use of digested sewage sludge requires better understanding of the behaviour and fate of contaminant metals in the plant root zone. A study employing rhizo-pot and plug-tray experiments was conducted to identify the zone near spring barley roots (Hordeum vulgare) where concentration and speciation of Cu and Zn are affected. Cu and Zn bonding environments in the root epidermis/cortex and vascular tissue were also identified. In the digested sludge-amended soil, spring barley absorbed Cu only from the immediate vicinity of the roots (<< 1 mm), but Zn was taken up from further afield (> 1 mm). In the rhizosphere Cu was predominately present as Cu(I) oxides or as Cu(II) absorbed/bonded to phosphate, whereas Zn was present as Zn(II) in inner-sphere complexes with metal oxide surfaces, as Zn(II) sulphides or Zn(II) bonded to/incorporated into carbonates. Cu taken-up by spring barley roots was largely sequestered in the root epidermis and/or cortex predominately in the coordination environments similar to those seen in the rhizosphere. Only a small proportion of the Cu was translocated into the vascular tissue (where it is in the same two bonding environments). Zn taken-up by spring barley roots was present as Zn(II) sulphides, Zn(II) absorbed to/incorporated into carbonates, or Zn(II)-organic complexes. Zn was readily translocated from roots to shoots. Better understanding of these differences in the mobility and uptake of Cu and Zn in sludge-amended agricultural soils could be used to undertake element specific risk assessments.

污水污泥改良土壤中春大麦根系附近铜、锌的分布与形态
农业利用已消化的污水污泥的风险管理需要更好地了解植物根区污染金属的行为和命运。采用根盆和塞盘试验,确定了春大麦根附近铜、锌浓度和形态受影响的区域。在根表皮/皮层和维管组织中也发现了铜和锌的结合环境。在消化污泥改良土壤中,春大麦仅从根系附近(1mm)吸收铜。在根际中,Cu主要以Cu(I)氧化物或Cu(II)吸附/结合到磷酸盐的形式存在,而Zn则以Zn(II)形式存在于与金属氧化物表面的球内配合物中,以Zn(II)硫化物或Zn(II)结合/结合到碳酸盐中。春大麦根对铜的吸收主要集中在根表皮和/或根皮层,主要集中在与根际相似的配位环境中。只有一小部分铜被转移到维管组织中(在那里它处于相同的两个键合环境中)。春大麦根系吸收的锌主要以锌(II)硫化物、锌(II)被碳酸盐吸收或并入碳酸盐或锌(II)-有机配合物的形式存在。锌很容易从根向茎转移。更好地了解污泥改良农业土壤中铜和锌的流动性和吸收的这些差异,可以用于进行特定元素的风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信