Identifying and Quantifying Loss Sources in Anion-Exchange Membrane Water Electrolyzers.

ACS electrochemistry Pub Date : 2025-01-17 eCollection Date: 2025-05-01 DOI:10.1021/acselectrochem.4c00156
Karam Yassin, Rinat Attias, Yoed Tsur, Dario R Dekel
{"title":"Identifying and Quantifying Loss Sources in Anion-Exchange Membrane Water Electrolyzers.","authors":"Karam Yassin, Rinat Attias, Yoed Tsur, Dario R Dekel","doi":"10.1021/acselectrochem.4c00156","DOIUrl":null,"url":null,"abstract":"<p><p>Anion-exchange membrane (AEM) water electrolyzers (AEMWEs) have gained significant attention for their ability to utilize precious-metal-free catalysts and environmentally friendly fluorine-free hydrocarbon polymeric membranes. In this study, we identify and quantify the sources of performance losses in <i>operando</i> AEMWEs using an innovative approach based on electrochemical impedance spectroscopy and MATLAB-based impedance spectroscopy genetic programming. Using this approach, we move beyond conventional equivalent circuit models to develop a proper and analytical model of the distribution function of relaxation times (DFRT), enabling a deeper analysis of Faradaic and non-Faradaic processes. We apply this framework to isolate the critical processes-ohmic, ionic transport, charge transfer, and mass transfer-across various conditions, including KOH concentration, dry cathode operation mode with different anode electrolytes (KOH, K<sub>2</sub>CO<sub>3</sub>, and pure water), cell temperature, and membrane type. Our results indicate a considerable performance reduction as the KOH concentration in the anode decreases, primarily due to the relatively high ionic transport resistance. Our observations show that the performance of dry cathode operation with KOH in the anode yields a comparable performance to dual-side electrolyte feeding due to sufficient water back-diffusion from the anode, which efficiently maintains cathode hydration. Conversely, using pure water as an electrolyte in the anode with a dry cathode significantly increases cell resistances and compromises ionic transport, underscoring the urgent need for highly conductive ionomeric materials and strategies. These insights indicate that using DFRT to evaluate the AEMWE operation by separating and associating the electrochemical phenomena could simplify system design while enabling more efficient generation of dry, pure hydrogen and advancing the technology toward commercial application.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 5","pages":"655-666"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anion-exchange membrane (AEM) water electrolyzers (AEMWEs) have gained significant attention for their ability to utilize precious-metal-free catalysts and environmentally friendly fluorine-free hydrocarbon polymeric membranes. In this study, we identify and quantify the sources of performance losses in operando AEMWEs using an innovative approach based on electrochemical impedance spectroscopy and MATLAB-based impedance spectroscopy genetic programming. Using this approach, we move beyond conventional equivalent circuit models to develop a proper and analytical model of the distribution function of relaxation times (DFRT), enabling a deeper analysis of Faradaic and non-Faradaic processes. We apply this framework to isolate the critical processes-ohmic, ionic transport, charge transfer, and mass transfer-across various conditions, including KOH concentration, dry cathode operation mode with different anode electrolytes (KOH, K2CO3, and pure water), cell temperature, and membrane type. Our results indicate a considerable performance reduction as the KOH concentration in the anode decreases, primarily due to the relatively high ionic transport resistance. Our observations show that the performance of dry cathode operation with KOH in the anode yields a comparable performance to dual-side electrolyte feeding due to sufficient water back-diffusion from the anode, which efficiently maintains cathode hydration. Conversely, using pure water as an electrolyte in the anode with a dry cathode significantly increases cell resistances and compromises ionic transport, underscoring the urgent need for highly conductive ionomeric materials and strategies. These insights indicate that using DFRT to evaluate the AEMWE operation by separating and associating the electrochemical phenomena could simplify system design while enabling more efficient generation of dry, pure hydrogen and advancing the technology toward commercial application.

阴离子交换膜水电解槽损耗源的识别与量化。
阴离子交换膜(AEM)水电解槽(AEMWEs)因其使用无贵金属催化剂和环保型无氟碳氢化合物聚合物膜的能力而受到广泛关注。在这项研究中,我们使用一种基于电化学阻抗谱和基于matlab的阻抗谱遗传规划的创新方法来识别和量化operando AEMWEs性能损失的来源。使用这种方法,我们超越了传统的等效电路模型,开发了松弛时间分布函数(DFRT)的适当分析模型,从而能够更深入地分析法拉第和非法拉第过程。我们应用这个框架来分离不同条件下的关键过程——欧姆、离子传递、电荷传递和质量传递,包括KOH浓度、干阴极操作模式和不同阳极电解质(KOH、K2CO3和纯水)、电池温度和膜类型。我们的研究结果表明,随着阳极中KOH浓度的降低,性能显著降低,主要是由于相对较高的离子传输阻力。我们的观察表明,在阳极中使用KOH的干阴极操作的性能与双向电解液的性能相当,因为阳极有足够的水反扩散,有效地维持了阴极的水合作用。相反,在阳极和干阴极中使用纯水作为电解质会显著增加电池电阻并损害离子传输,强调对高导电性离子材料和策略的迫切需要。这些发现表明,通过分离和关联电化学现象,使用DFRT来评估AEMWE操作可以简化系统设计,同时能够更有效地生成干燥、纯氢,并将该技术推向商业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信