A Mathematical Model of Clonal Hematopoiesis Explaining Phase Transitions in Chronic Myeloid Leukemia.

Lorand Gabriel Parajdi, Xue Bai, Dávid Kegyes, Ciprian Tomuleasa
{"title":"A Mathematical Model of Clonal Hematopoiesis Explaining Phase Transitions in Chronic Myeloid Leukemia.","authors":"Lorand Gabriel Parajdi, Xue Bai, Dávid Kegyes, Ciprian Tomuleasa","doi":"10.1093/imammb/dqaf004","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a mathematical model describing cloned hematopoiesis in chronic myeloid leukemia (CML) through a nonlinear system of differential equations. The primary objective is to understand the progression from healthy hematopoiesis to the chronic and accelerated-acute phases in myeloid leukemia. The model incorporates intrinsic cellular division events in hematopoiesis and delineates the evolution of chronic myeloid leukemia into five compartments: cycling stem cells, quiescent stem cells, progenitor cells, differentiated cells, and terminally differentiated cells. Our analysis reveals the existence of three distinct non-zero steady states within the dynamical system, representing healthy hematopoiesis, the chronic phase, and the accelerated-acute stage of the disease. We investigate the local and global stability of these steady states and provide a characterization of the hematopoietic states based on this analysis. Additionally, numerical simulations are included to illustrate the theoretical results.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a mathematical model describing cloned hematopoiesis in chronic myeloid leukemia (CML) through a nonlinear system of differential equations. The primary objective is to understand the progression from healthy hematopoiesis to the chronic and accelerated-acute phases in myeloid leukemia. The model incorporates intrinsic cellular division events in hematopoiesis and delineates the evolution of chronic myeloid leukemia into five compartments: cycling stem cells, quiescent stem cells, progenitor cells, differentiated cells, and terminally differentiated cells. Our analysis reveals the existence of three distinct non-zero steady states within the dynamical system, representing healthy hematopoiesis, the chronic phase, and the accelerated-acute stage of the disease. We investigate the local and global stability of these steady states and provide a characterization of the hematopoietic states based on this analysis. Additionally, numerical simulations are included to illustrate the theoretical results.

克隆造血的数学模型解释慢性髓系白血病的相变。
本研究提出了一个非线性微分方程组描述慢性髓性白血病(CML)克隆造血的数学模型。主要目的是了解骨髓性白血病从健康造血到慢性和加速急性期的进展。该模型结合了造血过程中固有的细胞分裂事件,并将慢性髓系白血病的进化分为五个部分:循环干细胞、静止干细胞、祖细胞、分化细胞和终末分化细胞。我们的分析表明,在动力系统中存在三个不同的非零稳态,分别代表健康造血,慢性期和疾病的加速急性期。我们研究了这些稳定状态的局部和全局稳定性,并根据这一分析提供了造血状态的表征。此外,还进行了数值模拟来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信