Joost Janssen, Ana Guil Gallego, Covadonga Martínez Díaz-Caneja, Noemi Gonzalez Lois, Niels Janssen, Javier González-Peñas, Pedro Macias Gordaliza, Elizabeth Buimer, Neeltje van Haren, Celso Arango, René Kahn, Hilleke E Hulshoff Pol, Hugo G Schnack
{"title":"Heterogeneity of morphometric similarity networks in health and schizophrenia.","authors":"Joost Janssen, Ana Guil Gallego, Covadonga Martínez Díaz-Caneja, Noemi Gonzalez Lois, Niels Janssen, Javier González-Peñas, Pedro Macias Gordaliza, Elizabeth Buimer, Neeltje van Haren, Celso Arango, René Kahn, Hilleke E Hulshoff Pol, Hugo G Schnack","doi":"10.1038/s41537-025-00612-2","DOIUrl":null,"url":null,"abstract":"<p><p>Reduced structural network connectivity is proposed as a biomarker for chronic schizophrenia. This study assessed regional morphometric similarity as an indicator of cortical inter-regional connectivity, employing longitudinal normative modeling to evaluate whether decreases are consistent across individuals with schizophrenia. Normative models were trained and validated using data from healthy controls (n = 4310). Individual deviations from these norms were measured at baseline and follow-up, and categorized as infra-normal, normal, or supra-normal. Additionally, we assessed the change over time in the total number of infra- or supra-normal regions for each individual. At baseline, patients exhibited reduced morphometric similarity within the default mode network compared to healthy controls. The proportion of patients with infra- or supra-normal values in any region at both baseline and follow-up was low (<6%) and similar to that of healthy controls. Mean intra-group changes in the number of infra- or supra-normal regions over time were minimal (<1) for both the schizophrenia and control groups, with no significant differences observed between them. Normative modeling with multiple timepoints enables the identification of patients with significant static decreases and dynamic changes of morphometric similarity over time and provides further insight into the pervasiveness of morphometric similarity abnormalities across individuals with chronic schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"70"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00612-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Reduced structural network connectivity is proposed as a biomarker for chronic schizophrenia. This study assessed regional morphometric similarity as an indicator of cortical inter-regional connectivity, employing longitudinal normative modeling to evaluate whether decreases are consistent across individuals with schizophrenia. Normative models were trained and validated using data from healthy controls (n = 4310). Individual deviations from these norms were measured at baseline and follow-up, and categorized as infra-normal, normal, or supra-normal. Additionally, we assessed the change over time in the total number of infra- or supra-normal regions for each individual. At baseline, patients exhibited reduced morphometric similarity within the default mode network compared to healthy controls. The proportion of patients with infra- or supra-normal values in any region at both baseline and follow-up was low (<6%) and similar to that of healthy controls. Mean intra-group changes in the number of infra- or supra-normal regions over time were minimal (<1) for both the schizophrenia and control groups, with no significant differences observed between them. Normative modeling with multiple timepoints enables the identification of patients with significant static decreases and dynamic changes of morphometric similarity over time and provides further insight into the pervasiveness of morphometric similarity abnormalities across individuals with chronic schizophrenia.