Carlos Rodriguez, Laura Pappas, Quang Le Hong, Laura Baquero, Eike Nagel
{"title":"Cardiac imaging for the detection of ischemia: current status and future perspectives.","authors":"Carlos Rodriguez, Laura Pappas, Quang Le Hong, Laura Baquero, Eike Nagel","doi":"10.1080/17434440.2025.2500631","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Coronary artery disease is the main cause of mortality worldwide mandating early detection, appropriate treatment, and follow-up. Noninvasive cardiac imaging techniques allow detection of obstructive coronary heart disease by direct visualization of the arteries or myocardial blood flow reduction. These techniques have made remarkable progress since their introduction, achieving high diagnostic precision. This review aims at evaluating these noninvasive cardiac imaging techniques, rendering a thorough overview of diagnostic decision-making for detection of ischemia.</p><p><strong>Areas covered: </strong>We discuss the latest advances in the field such as computed tomography angiography, single-photon emission tomography, positron emission tomography, and cardiac magnetic resonance; their main advantages and disadvantages, their most appropriate use and prospects. For the review, we analyzed the literature from 2009 to 2024 on noninvasive cardiac imaging in the diagnosis of coronary artery disease. The review included the 78 publications considered most relevant, including landmark trials, review articles and guidelines.</p><p><strong>Expert opinion: </strong>The progress in cardiac imaging is anticipated to overcome various limitations such as high costs, radiation exposure, artifacts, and differences in interpretation among observers. It is expected to lead to more automated scanning processes, and with the assistance of artificial intelligence-driven post-processing software, higher accuracy and reproducibility may be attained.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"581-594"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2025.2500631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Coronary artery disease is the main cause of mortality worldwide mandating early detection, appropriate treatment, and follow-up. Noninvasive cardiac imaging techniques allow detection of obstructive coronary heart disease by direct visualization of the arteries or myocardial blood flow reduction. These techniques have made remarkable progress since their introduction, achieving high diagnostic precision. This review aims at evaluating these noninvasive cardiac imaging techniques, rendering a thorough overview of diagnostic decision-making for detection of ischemia.
Areas covered: We discuss the latest advances in the field such as computed tomography angiography, single-photon emission tomography, positron emission tomography, and cardiac magnetic resonance; their main advantages and disadvantages, their most appropriate use and prospects. For the review, we analyzed the literature from 2009 to 2024 on noninvasive cardiac imaging in the diagnosis of coronary artery disease. The review included the 78 publications considered most relevant, including landmark trials, review articles and guidelines.
Expert opinion: The progress in cardiac imaging is anticipated to overcome various limitations such as high costs, radiation exposure, artifacts, and differences in interpretation among observers. It is expected to lead to more automated scanning processes, and with the assistance of artificial intelligence-driven post-processing software, higher accuracy and reproducibility may be attained.