Transfer learning assessment of small datasets relating manufacturing parameters with electrochemical energy cell component properties.

npj Advanced Manufacturing Pub Date : 2025-01-01 Epub Date: 2025-04-18 DOI:10.1038/s44334-025-00024-1
Francisco Fernandez, Soorya Saravanan, Rashen Lou Omongos, Javier F Troncoso, Diego E Galvez-Aranda, Alejandro A Franco
{"title":"Transfer learning assessment of small datasets relating manufacturing parameters with electrochemical energy cell component properties.","authors":"Francisco Fernandez, Soorya Saravanan, Rashen Lou Omongos, Javier F Troncoso, Diego E Galvez-Aranda, Alejandro A Franco","doi":"10.1038/s44334-025-00024-1","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of electrochemical cells for energy storage and conversion can be improved by optimizing their manufacturing processes. This can be time-consuming and costly with the traditional trial-and-error approaches. Machine Learning (ML) models can help to overcome these obstacles. In academic research laboratories, manufacturing dataset sizes can be small, while ML models typically require large amounts of data. In this work, we propose a simple but still novel application of a Transfer Learning (TL) approach to address these manufacturing problems with a small amount of data. We have tested this approach with pre-existing experimental and stochastically generated datasets. These datasets consisted of component properties (e.g., electrode density) related to different manufacturing parameters (e.g., solid content, comma gap, coating speed). We have demonstrated the robustness of our TL approach for manufacturing problems by achieving excellent prediction performance for electrodes in lithium-ion batteries and gas diffusion layers in fuel cells.</p>","PeriodicalId":501702,"journal":{"name":"npj Advanced Manufacturing","volume":"2 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44334-025-00024-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of electrochemical cells for energy storage and conversion can be improved by optimizing their manufacturing processes. This can be time-consuming and costly with the traditional trial-and-error approaches. Machine Learning (ML) models can help to overcome these obstacles. In academic research laboratories, manufacturing dataset sizes can be small, while ML models typically require large amounts of data. In this work, we propose a simple but still novel application of a Transfer Learning (TL) approach to address these manufacturing problems with a small amount of data. We have tested this approach with pre-existing experimental and stochastically generated datasets. These datasets consisted of component properties (e.g., electrode density) related to different manufacturing parameters (e.g., solid content, comma gap, coating speed). We have demonstrated the robustness of our TL approach for manufacturing problems by achieving excellent prediction performance for electrodes in lithium-ion batteries and gas diffusion layers in fuel cells.

与电化学能量电池组件特性相关的制造参数小数据集的迁移学习评估。
通过优化电化学电池的制造工艺,可以提高其储能和转换性能。使用传统的试错方法,这既耗时又昂贵。机器学习(ML)模型可以帮助克服这些障碍。在学术研究实验室中,制造数据集的大小可能很小,而ML模型通常需要大量的数据。在这项工作中,我们提出了一种简单但仍然新颖的迁移学习(TL)方法的应用,以解决这些少量数据的制造问题。我们已经用预先存在的实验和随机生成的数据集测试了这种方法。这些数据集包括与不同制造参数(例如固体含量、逗号间隙、涂层速度)相关的组件属性(例如电极密度)。通过在锂离子电池电极和燃料电池气体扩散层中实现出色的预测性能,我们已经证明了TL方法在制造问题上的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信