Variational inference for microbiome survey data with application to global ocean data.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-05-02 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf062
Aditya Mishra, Jesse McNichol, Jed Fuhrman, David Blei, Christian L Müller
{"title":"Variational inference for microbiome survey data with application to global ocean data.","authors":"Aditya Mishra, Jesse McNichol, Jed Fuhrman, David Blei, Christian L Müller","doi":"10.1093/ismeco/ycaf062","DOIUrl":null,"url":null,"abstract":"<p><p>Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible and interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we introduce a flexible probabilistic modeling framework, VI-MIDAS (variational inference for microbiome survey data analysis), that enables joint estimation of context-dependent drivers and broad patterns of associations of microbial taxon abundances from microbiome survey data. VI-MIDAS comprises mechanisms for direct coupling of taxon abundances with covariates and taxa-specific latent coupling, which can incorporate spatio-temporal information and taxon-taxon interactions. We leverage mean-field variational inference for posterior VI-MIDAS model parameter estimation and illustrate model building and analysis using Tara Ocean Expedition survey data. Using VI-MIDAS' latent embedding model and tools from network analysis, we show that marine microbial communities can be broadly categorized into five modules, including SAR11-, nitrosopumilus-, and alteromondales-dominated communities, each associated with specific environmental and spatiotemporal signatures. VI-MIDAS also finds evidence for largely positive taxon-taxon associations in SAR11 or Rhodospirillales clades, and negative associations with Alteromonadales and Flavobacteriales classes. Our results indicate that VI-MIDAS provides a powerful integrative statistical analysis framework for discovering broad patterns of associations between microbial taxa and context-specific covariate data from microbiome survey data.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf062"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible and interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we introduce a flexible probabilistic modeling framework, VI-MIDAS (variational inference for microbiome survey data analysis), that enables joint estimation of context-dependent drivers and broad patterns of associations of microbial taxon abundances from microbiome survey data. VI-MIDAS comprises mechanisms for direct coupling of taxon abundances with covariates and taxa-specific latent coupling, which can incorporate spatio-temporal information and taxon-taxon interactions. We leverage mean-field variational inference for posterior VI-MIDAS model parameter estimation and illustrate model building and analysis using Tara Ocean Expedition survey data. Using VI-MIDAS' latent embedding model and tools from network analysis, we show that marine microbial communities can be broadly categorized into five modules, including SAR11-, nitrosopumilus-, and alteromondales-dominated communities, each associated with specific environmental and spatiotemporal signatures. VI-MIDAS also finds evidence for largely positive taxon-taxon associations in SAR11 or Rhodospirillales clades, and negative associations with Alteromonadales and Flavobacteriales classes. Our results indicate that VI-MIDAS provides a powerful integrative statistical analysis framework for discovering broad patterns of associations between microbial taxa and context-specific covariate data from microbiome survey data.

微生物组调查数据的变分推理及其在全球海洋数据中的应用。
以可重复和可解释的方式将序列衍生的微生物分类群丰度与宿主(病理)生理或栖息地特征联系起来,仍然是微生物组调查数据分析的一个巨大挑战。在这里,我们引入了一个灵活的概率建模框架,VI-MIDAS(微生物组调查数据分析的变分推理),它可以从微生物组调查数据中联合估计环境相关驱动因素和微生物分类群丰度关联的广泛模式。VI-MIDAS包括类群丰度与协变量的直接耦合机制和类群特异性的潜在耦合机制,可以综合时空信息和类群间的相互作用。我们利用平均场变分推理进行后验VI-MIDAS模型参数估计,并使用Tara Ocean Expedition调查数据说明模型构建和分析。利用VI-MIDAS的潜在嵌入模型和网络分析工具,我们发现海洋微生物群落可以大致分为5个模块,包括SAR11-、亚硝酸菌-和异单菌-主导群落,每个模块都与特定的环境和时空特征相关。VI-MIDAS还发现在SAR11或Rhodospirillales分支中存在大量正相关的分类-分类群,而在Alteromonadales和Flavobacteriales分类中存在负相关。我们的研究结果表明,VI-MIDAS提供了一个强大的综合统计分析框架,用于从微生物组调查数据中发现微生物分类群和特定环境协变量数据之间的广泛关联模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信