Deo Rei L Agnila, Rahul Jain, Michael J Diaz, Tabitha R Hudlock, Rachel A Eakins, Andrea Chobrutskiy, Boris I Chobrutskiy, George Blanck
{"title":"TCR CDR3 chemical complementarity to HPV epitopes is associated with a better outcome for cervical cancer.","authors":"Deo Rei L Agnila, Rahul Jain, Michael J Diaz, Tabitha R Hudlock, Rachel A Eakins, Andrea Chobrutskiy, Boris I Chobrutskiy, George Blanck","doi":"10.1007/s00335-025-10127-x","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the fact that HPV vaccines are likely to lead to a significant reduction in cervical cancer occurrence, there remains cervical cancer incidence independent of the vaccine and cervical cancer arising in the absence of vaccination. Thus, continued efforts are needed to address the potential parameters of cervical cancer that could impact therapy and could lead to additional ways of reducing cervical cancer death rates. Adaptive immune receptor recombinations were obtained from the cancer genome atlas (TCGA) cervical cancer database through tumor exome and RNAseq files as well as from the independent Cancer Genome Characterization Initiative (CGCI) cervical cancer dataset. T-cell receptor (TCR) complementarity determining region-3's (CDR3s) were then assessed, based on chemical complementarity to human papillomavirus (HPV) T-cell epitopes. Results indicated increased overall survival probabilities consistently across the three TCR datasets with TCR CDR3 chemical complementarity to the same HPV epitopes, specifically immune epitope database (IEDB) designations: IEDB-1625373, IEDB-174148, and IEDB-110943. Among other potential applications of these results, the results may indicate HPV epitopes that could be useful targets for immunotherapy.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"683-691"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10127-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the fact that HPV vaccines are likely to lead to a significant reduction in cervical cancer occurrence, there remains cervical cancer incidence independent of the vaccine and cervical cancer arising in the absence of vaccination. Thus, continued efforts are needed to address the potential parameters of cervical cancer that could impact therapy and could lead to additional ways of reducing cervical cancer death rates. Adaptive immune receptor recombinations were obtained from the cancer genome atlas (TCGA) cervical cancer database through tumor exome and RNAseq files as well as from the independent Cancer Genome Characterization Initiative (CGCI) cervical cancer dataset. T-cell receptor (TCR) complementarity determining region-3's (CDR3s) were then assessed, based on chemical complementarity to human papillomavirus (HPV) T-cell epitopes. Results indicated increased overall survival probabilities consistently across the three TCR datasets with TCR CDR3 chemical complementarity to the same HPV epitopes, specifically immune epitope database (IEDB) designations: IEDB-1625373, IEDB-174148, and IEDB-110943. Among other potential applications of these results, the results may indicate HPV epitopes that could be useful targets for immunotherapy.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.