Adam Elbataioui, Daniel Bautista-Anguís, Barbora Mayer, Huanqing Zhang, Sandra Schlögl, Libor Kobera, Jiri Brus, Monika Stupavska, Felix Römer, Lidija D. Rafailovic, Jürgen Eckert
{"title":"Cyclization of Polyacrylonitrile Nanofibers Enhanced by Cu2O During Electrospinning","authors":"Adam Elbataioui, Daniel Bautista-Anguís, Barbora Mayer, Huanqing Zhang, Sandra Schlögl, Libor Kobera, Jiri Brus, Monika Stupavska, Felix Römer, Lidija D. Rafailovic, Jürgen Eckert","doi":"10.1021/acs.macromol.5c00369","DOIUrl":null,"url":null,"abstract":"This work uncovers a novel room-temperature cyclization pathway for polyacrylonitrile (PAN), facilitated by copper(I) oxide (Cu<sub>2</sub>O) during electrospinning, paving the way for advanced material design of functional materials. Cyclization, traditionally requiring temperatures around 290 °C, is an essential step in carbon fiber production and the development of advanced functional materials. We demonstrate that thermal pretreatment and the incorporation of Cu<sub>2</sub>O enable partial cyclization at ambient conditions, leading to the formation of nonaromatic structures such as azine and imine derivatives during electrospinning. The catalytic role of Cu<sub>2</sub>O in influencing cyclization is confirmed by dedicated analytical studies showing a significant extent in its presence. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) and Fourier-transform infrared spectroscopy (FTIR) reveal the chemical transformations induced by high-voltage during electrospinning, emphasizing the interplay between solution preparation, selection of catalysts, and electrospinning conditions. These findings highlight the significance of metal oxides in tailoring polymer chemistry within fiber structures and provide a foundation for exploring alternative catalysts to design nanofiber electrodes optimized for energy conversion applications.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00369","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work uncovers a novel room-temperature cyclization pathway for polyacrylonitrile (PAN), facilitated by copper(I) oxide (Cu2O) during electrospinning, paving the way for advanced material design of functional materials. Cyclization, traditionally requiring temperatures around 290 °C, is an essential step in carbon fiber production and the development of advanced functional materials. We demonstrate that thermal pretreatment and the incorporation of Cu2O enable partial cyclization at ambient conditions, leading to the formation of nonaromatic structures such as azine and imine derivatives during electrospinning. The catalytic role of Cu2O in influencing cyclization is confirmed by dedicated analytical studies showing a significant extent in its presence. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) and Fourier-transform infrared spectroscopy (FTIR) reveal the chemical transformations induced by high-voltage during electrospinning, emphasizing the interplay between solution preparation, selection of catalysts, and electrospinning conditions. These findings highlight the significance of metal oxides in tailoring polymer chemistry within fiber structures and provide a foundation for exploring alternative catalysts to design nanofiber electrodes optimized for energy conversion applications.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.