Orestis Efthimiou, Jeroen Hoogland, Thomas P A Debray, Valerie Aponte Ribero, Wilma Knol, Huiberdina L Koek, Matthias Schwenkglenks, Séverine Henrard, Matthias Egger, Nicolas Rodondi, Ian R White
{"title":"Measuring the Performance of Survival Models to Personalize Treatment Choices.","authors":"Orestis Efthimiou, Jeroen Hoogland, Thomas P A Debray, Valerie Aponte Ribero, Wilma Knol, Huiberdina L Koek, Matthias Schwenkglenks, Séverine Henrard, Matthias Egger, Nicolas Rodondi, Ian R White","doi":"10.1002/sim.70050","DOIUrl":null,"url":null,"abstract":"<p><p>Various statistical and machine learning algorithms can be used to predict treatment effects at the patient level using data from randomized clinical trials (RCTs). Such predictions can facilitate individualized treatment decisions. Recently, a range of methods and metrics were developed for assessing the accuracy of such predictions. Here, we extend these methods, focusing on the case of survival (time-to-event) outcomes. We start by providing alternative definitions of the participant-level treatment benefit; subsequently, we summarize existing and propose new measures for assessing the performance of models estimating participant-level treatment benefits. We explore metrics assessing discrimination and calibration for benefit and decision accuracy. These measures can be used to assess the performance of statistical as well as machine learning models and can be useful during model development (i.e., for model selection or for internal validation) or when testing a model in new settings (i.e., in an external validation). We illustrate methods using simulated data and real data from the OPERAM trial, an RCT in multimorbid older people, which randomized participants to either standard care or a pharmacotherapy optimization intervention. We provide R codes for implementing all models and measures.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 7","pages":"e70050"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Various statistical and machine learning algorithms can be used to predict treatment effects at the patient level using data from randomized clinical trials (RCTs). Such predictions can facilitate individualized treatment decisions. Recently, a range of methods and metrics were developed for assessing the accuracy of such predictions. Here, we extend these methods, focusing on the case of survival (time-to-event) outcomes. We start by providing alternative definitions of the participant-level treatment benefit; subsequently, we summarize existing and propose new measures for assessing the performance of models estimating participant-level treatment benefits. We explore metrics assessing discrimination and calibration for benefit and decision accuracy. These measures can be used to assess the performance of statistical as well as machine learning models and can be useful during model development (i.e., for model selection or for internal validation) or when testing a model in new settings (i.e., in an external validation). We illustrate methods using simulated data and real data from the OPERAM trial, an RCT in multimorbid older people, which randomized participants to either standard care or a pharmacotherapy optimization intervention. We provide R codes for implementing all models and measures.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.