{"title":"Artificial intelligence in variant calling: a review.","authors":"Omar Abdelwahab, Davoud Torkamaneh","doi":"10.3389/fbinf.2025.1574359","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has revolutionized numerous fields, including genomics, where it has significantly impacted variant calling, a crucial process in genomic analysis. Variant calling involves the detection of genetic variants such as single nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and structural variants from high-throughput sequencing data. Traditionally, statistical approaches have dominated this task, but the advent of AI led to the development of sophisticated tools that promise higher accuracy, efficiency, and scalability. This review explores the state-of-the-art AI-based variant calling tools, including DeepVariant, DNAscope, DeepTrio, Clair, Clairvoyante, Medaka, and HELLO. We discuss their underlying methodologies, strengths, limitations, and performance metrics across different sequencing technologies, alongside their computational requirements, focusing primarily on SNP and InDel detection. By comparing these AI-driven techniques with conventional methods, we highlight the transformative advancements AI has introduced and its potential to further enhance genomic research.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1574359"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1574359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has revolutionized numerous fields, including genomics, where it has significantly impacted variant calling, a crucial process in genomic analysis. Variant calling involves the detection of genetic variants such as single nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and structural variants from high-throughput sequencing data. Traditionally, statistical approaches have dominated this task, but the advent of AI led to the development of sophisticated tools that promise higher accuracy, efficiency, and scalability. This review explores the state-of-the-art AI-based variant calling tools, including DeepVariant, DNAscope, DeepTrio, Clair, Clairvoyante, Medaka, and HELLO. We discuss their underlying methodologies, strengths, limitations, and performance metrics across different sequencing technologies, alongside their computational requirements, focusing primarily on SNP and InDel detection. By comparing these AI-driven techniques with conventional methods, we highlight the transformative advancements AI has introduced and its potential to further enhance genomic research.