{"title":"Seasonal patterns of air pollution in Delhi: interplay between meteorological conditions and emission sources.","authors":"Najib Ansari, Preeti Kumari, Rahul Kumar, Pavan Kumar, Aquib Shamshad, Saddam Hossain, Ashutosh Sharma, Yogeshwar Singh, Maya Kumari, Varun Narayan Mishra, Rukhsana, Akram Javed","doi":"10.1007/s10653-025-02474-0","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution (AP) poses a significant public health risk, particularly in developing countries, where it contributes to a growing prevalence of health issues. This study investigates seasonal variations in key air pollutants, including particulate matter, nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), carbon monoxide (CO), and ozone (O<sub>3</sub>), in New Delhi during 2024. Utilizing Sentinel-5 satellite data processed through the Google earth engine (GEE), a cloud-based geospatial analysis platform, the study evaluates pollutant dynamics during pre-monsoon and post-monsoon seasons. The methodology involved programming in JavaScript to extract pollution parameters, applying cloud filters to eliminate contaminated data, and generating average pollution maps at monthly, seasonal, and annual intervals. The results revealed distinct seasonal pollution patterns. Pre-monsoon root mean square error (RMSE) values for CO, NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub> were 0.13, 2.58, 4.62, and 2.36, respectively, while post-monsoon values were 0.17, 2.41, 4.31, and 4.60. Winter months exhibited the highest pollution levels due to increased emissions from biomass burning, vehicular activity, and industrial operations, coupled with atmospheric inversions. Conversely, monsoon months saw a substantial reduction in pollutant levels due to wet deposition and improved dispersion driven by stronger winds. Additionally, post-monsoon crop residue burning emerged as a major episodic pollution source. This study underscores the utility of Sentinel-5 products in monitoring urban air pollution and provides valuable insights for policymakers to develop targeted mitigation strategies, particularly for urban megacities like Delhi, where seasonal and source-specific interventions are crucial for reducing air pollution and its associated health risks.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"175"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02474-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution (AP) poses a significant public health risk, particularly in developing countries, where it contributes to a growing prevalence of health issues. This study investigates seasonal variations in key air pollutants, including particulate matter, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3), in New Delhi during 2024. Utilizing Sentinel-5 satellite data processed through the Google earth engine (GEE), a cloud-based geospatial analysis platform, the study evaluates pollutant dynamics during pre-monsoon and post-monsoon seasons. The methodology involved programming in JavaScript to extract pollution parameters, applying cloud filters to eliminate contaminated data, and generating average pollution maps at monthly, seasonal, and annual intervals. The results revealed distinct seasonal pollution patterns. Pre-monsoon root mean square error (RMSE) values for CO, NO2, SO2, and O3 were 0.13, 2.58, 4.62, and 2.36, respectively, while post-monsoon values were 0.17, 2.41, 4.31, and 4.60. Winter months exhibited the highest pollution levels due to increased emissions from biomass burning, vehicular activity, and industrial operations, coupled with atmospheric inversions. Conversely, monsoon months saw a substantial reduction in pollutant levels due to wet deposition and improved dispersion driven by stronger winds. Additionally, post-monsoon crop residue burning emerged as a major episodic pollution source. This study underscores the utility of Sentinel-5 products in monitoring urban air pollution and provides valuable insights for policymakers to develop targeted mitigation strategies, particularly for urban megacities like Delhi, where seasonal and source-specific interventions are crucial for reducing air pollution and its associated health risks.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.