Developing a machine learning-based prediction model for postinduction hypotension.

IF 2.2 3区 医学 Q2 ANESTHESIOLOGY
Maksim Katsin, Maxim Glebov, Haim Berkenstadt, Dina Orkin, Yotam Portnoy, Adi Shuchami, Amit Yaniv-Rosenfeld, Teddy Lazebnik
{"title":"Developing a machine learning-based prediction model for postinduction hypotension.","authors":"Maksim Katsin, Maxim Glebov, Haim Berkenstadt, Dina Orkin, Yotam Portnoy, Adi Shuchami, Amit Yaniv-Rosenfeld, Teddy Lazebnik","doi":"10.1007/s10877-025-01295-x","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial hypotension is a common and often unintended event during surgery under general anesthesia, associated with increased postoperative complications, such as kidney injury, myocardial injury, and stroke. Postinduction hypotension (PIH) is influenced by patient-specific factors, chronic medication use, and anesthetic induction regimens. Traditional predictive models struggle with this complexity, making machine learning (ML) a promising alternative due to its ability to handle complex datasets and identify hidden patterns. This study aimed to develop and validate an ML-based model for predicting PIH and identifying key clinical predictors. A retrospective cohort study of 20,309 adult patients undergoing non-obstetric surgery under general anesthesia with intravenous induction was conducted. The primary outcome was the occurrence of PIH, defined as mean arterial pressure (MAP) < 55 mmHg within 10 min post-induction. Data were split into training and validation sets using k-fold cross-validation. The model's predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC), and feature importance was assessed using SHapley Additive exPlanations (SHAP) values. PIH occurred in 4,948 patients (24.4%). Key predictors included preinduction systolic and mean arterial pressures, propofol dose, and beta-blocker use. The ML model achieved an AUC of 0.732 in predicting PIH. The ML-based model demonstrated significant predictive capability for PIH, identifying key clinical predictors. This model holds the potential for improving preoperative planning and patient risk stratification. However, further validation through prospective studies is necessary to confirm these findings.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"889-899"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-025-01295-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arterial hypotension is a common and often unintended event during surgery under general anesthesia, associated with increased postoperative complications, such as kidney injury, myocardial injury, and stroke. Postinduction hypotension (PIH) is influenced by patient-specific factors, chronic medication use, and anesthetic induction regimens. Traditional predictive models struggle with this complexity, making machine learning (ML) a promising alternative due to its ability to handle complex datasets and identify hidden patterns. This study aimed to develop and validate an ML-based model for predicting PIH and identifying key clinical predictors. A retrospective cohort study of 20,309 adult patients undergoing non-obstetric surgery under general anesthesia with intravenous induction was conducted. The primary outcome was the occurrence of PIH, defined as mean arterial pressure (MAP) < 55 mmHg within 10 min post-induction. Data were split into training and validation sets using k-fold cross-validation. The model's predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC), and feature importance was assessed using SHapley Additive exPlanations (SHAP) values. PIH occurred in 4,948 patients (24.4%). Key predictors included preinduction systolic and mean arterial pressures, propofol dose, and beta-blocker use. The ML model achieved an AUC of 0.732 in predicting PIH. The ML-based model demonstrated significant predictive capability for PIH, identifying key clinical predictors. This model holds the potential for improving preoperative planning and patient risk stratification. However, further validation through prospective studies is necessary to confirm these findings.

Abstract Image

Abstract Image

Abstract Image

开发基于机器学习的诱导后低血压预测模型。
动脉低血压是全麻手术中常见的意外事件,与术后并发症增加有关,如肾损伤、心肌损伤和中风。诱导后低血压(PIH)受患者特异性因素、慢性药物使用和麻醉诱导方案的影响。传统的预测模型与这种复杂性作斗争,使机器学习(ML)成为一个有前途的替代方案,因为它能够处理复杂的数据集和识别隐藏的模式。本研究旨在开发和验证一个基于ml的模型来预测PIH并确定关键的临床预测因子。本文对20,309例接受非产科手术全麻静脉诱导的成人患者进行回顾性队列研究。主要终点是PIH的发生,定义为平均动脉压(MAP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
13.60%
发文量
144
审稿时长
6-12 weeks
期刊介绍: The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine. The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group. The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信