Quantifying prevalence and risk factors of HIV multiple infection in Uganda from population-based deep-sequence data.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-04-22 eCollection Date: 2025-04-01 DOI:10.1371/journal.ppat.1013065
Michael A Martin, Andrea Brizzi, Xiaoyue Xi, Ronald Moses Galiwango, Sikhulile Moyo, Deogratius Ssemwanga, Alexandra Blenkinsop, Andrew D Redd, Lucie Abeler-Dörner, Christophe Fraser, Steven J Reynolds, Thomas C Quinn, Joseph Kagaayi, David Bonsall, David Serwadda, Gertrude Nakigozi, Godfrey Kigozi, M Kate Grabowski, Oliver Ratmann
{"title":"Quantifying prevalence and risk factors of HIV multiple infection in Uganda from population-based deep-sequence data.","authors":"Michael A Martin, Andrea Brizzi, Xiaoyue Xi, Ronald Moses Galiwango, Sikhulile Moyo, Deogratius Ssemwanga, Alexandra Blenkinsop, Andrew D Redd, Lucie Abeler-Dörner, Christophe Fraser, Steven J Reynolds, Thomas C Quinn, Joseph Kagaayi, David Bonsall, David Serwadda, Gertrude Nakigozi, Godfrey Kigozi, M Kate Grabowski, Oliver Ratmann","doi":"10.1371/journal.ppat.1013065","DOIUrl":null,"url":null,"abstract":"<p><p>People living with HIV can acquire secondary infections through a process called superinfection, giving rise to simultaneous infection with genetically distinct variants (multiple infection). Multiple infection provides the necessary conditions for the generation of novel recombinant forms of HIV and may worsen clinical outcomes and increase the rate of transmission to HIV seronegative sexual partners. To date, studies of HIV multiple infection have relied on insensitive bulk-sequencing, labor intensive single genome amplification protocols, or deep-sequencing of short genome regions. Here, we identified multiple infections in whole-genome or near whole-genome HIV RNA deep-sequence data generated from plasma samples of 2,029 people living with viremic HIV who participated in the population-based Rakai Community Cohort Study (RCCS). We estimated individual- and population-level probabilities of being multiply infected and assessed epidemiological risk factors using the novel Bayesian deep-phylogenetic multiple infection model (deep - phyloMI) which accounts for bias due to partial sequencing success and false-negative and false-positive detection rates. We estimated that between 2010 and 2020, 4.09% (95% highest posterior density interval (HPD) 2.95%-5.45%) of RCCS participants with viremic HIV multiple infection at time of sampling. Participants living in high-HIV prevalence communities along Lake Victoria were 2.33-fold (95% HPD 1.3-3.7) more likely to harbor a multiple infection compared to individuals in lower prevalence neighboring communities. This work introduces a high-throughput surveillance framework for identifying people with multiple HIV infections and quantifying population-level prevalence and risk factors of multiple infection for clinical and epidemiological investigations.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 4","pages":"e1013065"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013065","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

People living with HIV can acquire secondary infections through a process called superinfection, giving rise to simultaneous infection with genetically distinct variants (multiple infection). Multiple infection provides the necessary conditions for the generation of novel recombinant forms of HIV and may worsen clinical outcomes and increase the rate of transmission to HIV seronegative sexual partners. To date, studies of HIV multiple infection have relied on insensitive bulk-sequencing, labor intensive single genome amplification protocols, or deep-sequencing of short genome regions. Here, we identified multiple infections in whole-genome or near whole-genome HIV RNA deep-sequence data generated from plasma samples of 2,029 people living with viremic HIV who participated in the population-based Rakai Community Cohort Study (RCCS). We estimated individual- and population-level probabilities of being multiply infected and assessed epidemiological risk factors using the novel Bayesian deep-phylogenetic multiple infection model (deep - phyloMI) which accounts for bias due to partial sequencing success and false-negative and false-positive detection rates. We estimated that between 2010 and 2020, 4.09% (95% highest posterior density interval (HPD) 2.95%-5.45%) of RCCS participants with viremic HIV multiple infection at time of sampling. Participants living in high-HIV prevalence communities along Lake Victoria were 2.33-fold (95% HPD 1.3-3.7) more likely to harbor a multiple infection compared to individuals in lower prevalence neighboring communities. This work introduces a high-throughput surveillance framework for identifying people with multiple HIV infections and quantifying population-level prevalence and risk factors of multiple infection for clinical and epidemiological investigations.

从基于人群的深度序列数据量化乌干达艾滋病毒多重感染的患病率和危险因素。
艾滋病毒感染者可通过一种称为重复感染的过程获得继发感染,从而产生具有不同基因变异的同时感染(多重感染)。多次感染为新的HIV重组形式的产生提供了必要的条件,并可能使临床结果恶化,并增加向HIV血清阴性性伴侣的传播率。迄今为止,对HIV多重感染的研究依赖于不敏感的大量测序、劳动密集型的单基因组扩增方案或短基因组区域的深度测序。在这里,我们从参加基于人群的Rakai社区队列研究(RCCS)的2029名病毒型HIV感染者的血浆样本中发现了全基因组或近全基因组HIV RNA深度序列数据中的多重感染。我们使用新的贝叶斯深度系统发育多重感染模型(deep - phyloMI)估计了个体和群体水平的多重感染概率,并评估了流行病学风险因素,该模型解释了部分测序成功和假阴性和假阳性检漏率造成的偏差。我们估计在2010年至2020年期间,4.09%(95%最高后验密度区间(HPD) 2.95%-5.45%)的RCCS参与者在抽样时患有病毒性HIV多重感染。生活在维多利亚湖艾滋病病毒高流行社区的参与者,与低流行社区的个体相比,多重感染的可能性高出2.33倍(95% HPD为1.3-3.7)。这项工作引入了一个高通量监测框架,用于识别多重艾滋病毒感染者,并量化人群水平的患病率和多重感染的危险因素,用于临床和流行病学调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信