A large-scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression-free survival.
IF 6.6 2区 医学Q1 Biochemistry, Genetics and Molecular Biology
Emma J Beddowes, Mario Ortega Duran, Solon Karapanagiotis, Alistair Martin, Meiling Gao, Riccardo Masina, Ramona Woitek, James Tanner, Fleur Tippin, Justine Kane, Jonathan Lay, Anja Brouwer, Stephen-John Sammut, Suet-Feung Chin, Davina Gale, Dana W Y Tsui, Sarah-Jane Dawson, Nitzan Rosenfeld, Maurizio Callari, Oscar M Rueda, Carlos Caldas
{"title":"A large-scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression-free survival.","authors":"Emma J Beddowes, Mario Ortega Duran, Solon Karapanagiotis, Alistair Martin, Meiling Gao, Riccardo Masina, Ramona Woitek, James Tanner, Fleur Tippin, Justine Kane, Jonathan Lay, Anja Brouwer, Stephen-John Sammut, Suet-Feung Chin, Davina Gale, Dana W Y Tsui, Sarah-Jane Dawson, Nitzan Rosenfeld, Maurizio Callari, Oscar M Rueda, Carlos Caldas","doi":"10.1002/1878-0261.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring levels of circulating tumour-derived DNA (ctDNA) provides both a noninvasive snapshot of tumour burden and also potentially clonal evolution. Here, we describe how applying a novel statistical model to serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast cancer patients produces a rapid and inexpensive predictive assessment of treatment response and progression-free survival. A cohort of 149 patients had DNA extracted from serial plasma samples (total 1013, mean samples per patient = 6.80). Plasma DNA was assessed using sWGS and the tumour fraction in total cell-free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing and serial CA15-3 measurements. We identified a transition point of 7% estimated tumour fraction to stratify patients into different categories of progression risk using ichorCNA estimates and a time-dependent Cox Proportional Hazards model and validated it across different breast cancer subtypes and treatments, outperforming the alternative methods. We used the longitudinal ichorCNA values to develop a Bayesian learning model to predict subsequent treatment response with a sensitivity of 0.75 and a specificity of 0.66. In patients with metastatic breast cancer, a strategy of sWGS of ctDNA with longitudinal tracking of tumour fraction provides real-time information on treatment response. These results encourage a prospective large-scale clinical trial to evaluate the clinical benefit of early treatment changes based on ctDNA levels.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring levels of circulating tumour-derived DNA (ctDNA) provides both a noninvasive snapshot of tumour burden and also potentially clonal evolution. Here, we describe how applying a novel statistical model to serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast cancer patients produces a rapid and inexpensive predictive assessment of treatment response and progression-free survival. A cohort of 149 patients had DNA extracted from serial plasma samples (total 1013, mean samples per patient = 6.80). Plasma DNA was assessed using sWGS and the tumour fraction in total cell-free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing and serial CA15-3 measurements. We identified a transition point of 7% estimated tumour fraction to stratify patients into different categories of progression risk using ichorCNA estimates and a time-dependent Cox Proportional Hazards model and validated it across different breast cancer subtypes and treatments, outperforming the alternative methods. We used the longitudinal ichorCNA values to develop a Bayesian learning model to predict subsequent treatment response with a sensitivity of 0.75 and a specificity of 0.66. In patients with metastatic breast cancer, a strategy of sWGS of ctDNA with longitudinal tracking of tumour fraction provides real-time information on treatment response. These results encourage a prospective large-scale clinical trial to evaluate the clinical benefit of early treatment changes based on ctDNA levels.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.