A large-scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression-free survival.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Emma J Beddowes, Mario Ortega Duran, Solon Karapanagiotis, Alistair Martin, Meiling Gao, Riccardo Masina, Ramona Woitek, James Tanner, Fleur Tippin, Justine Kane, Jonathan Lay, Anja Brouwer, Stephen-John Sammut, Suet-Feung Chin, Davina Gale, Dana W Y Tsui, Sarah-Jane Dawson, Nitzan Rosenfeld, Maurizio Callari, Oscar M Rueda, Carlos Caldas
{"title":"A large-scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression-free survival.","authors":"Emma J Beddowes, Mario Ortega Duran, Solon Karapanagiotis, Alistair Martin, Meiling Gao, Riccardo Masina, Ramona Woitek, James Tanner, Fleur Tippin, Justine Kane, Jonathan Lay, Anja Brouwer, Stephen-John Sammut, Suet-Feung Chin, Davina Gale, Dana W Y Tsui, Sarah-Jane Dawson, Nitzan Rosenfeld, Maurizio Callari, Oscar M Rueda, Carlos Caldas","doi":"10.1002/1878-0261.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring levels of circulating tumour-derived DNA (ctDNA) provides both a noninvasive snapshot of tumour burden and also potentially clonal evolution. Here, we describe how applying a novel statistical model to serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast cancer patients produces a rapid and inexpensive predictive assessment of treatment response and progression-free survival. A cohort of 149 patients had DNA extracted from serial plasma samples (total 1013, mean samples per patient = 6.80). Plasma DNA was assessed using sWGS and the tumour fraction in total cell-free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing and serial CA15-3 measurements. We identified a transition point of 7% estimated tumour fraction to stratify patients into different categories of progression risk using ichorCNA estimates and a time-dependent Cox Proportional Hazards model and validated it across different breast cancer subtypes and treatments, outperforming the alternative methods. We used the longitudinal ichorCNA values to develop a Bayesian learning model to predict subsequent treatment response with a sensitivity of 0.75 and a specificity of 0.66. In patients with metastatic breast cancer, a strategy of sWGS of ctDNA with longitudinal tracking of tumour fraction provides real-time information on treatment response. These results encourage a prospective large-scale clinical trial to evaluate the clinical benefit of early treatment changes based on ctDNA levels.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring levels of circulating tumour-derived DNA (ctDNA) provides both a noninvasive snapshot of tumour burden and also potentially clonal evolution. Here, we describe how applying a novel statistical model to serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast cancer patients produces a rapid and inexpensive predictive assessment of treatment response and progression-free survival. A cohort of 149 patients had DNA extracted from serial plasma samples (total 1013, mean samples per patient = 6.80). Plasma DNA was assessed using sWGS and the tumour fraction in total cell-free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing and serial CA15-3 measurements. We identified a transition point of 7% estimated tumour fraction to stratify patients into different categories of progression risk using ichorCNA estimates and a time-dependent Cox Proportional Hazards model and validated it across different breast cancer subtypes and treatments, outperforming the alternative methods. We used the longitudinal ichorCNA values to develop a Bayesian learning model to predict subsequent treatment response with a sensitivity of 0.75 and a specificity of 0.66. In patients with metastatic breast cancer, a strategy of sWGS of ctDNA with longitudinal tracking of tumour fraction provides real-time information on treatment response. These results encourage a prospective large-scale clinical trial to evaluate the clinical benefit of early treatment changes based on ctDNA levels.

一项使用循环肿瘤DNA和机器学习预测治疗结果和无进展生存期的转移性乳腺癌患者的大规模回顾性研究。
监测循环肿瘤源性DNA (ctDNA)的水平既提供了肿瘤负荷的无创快照,也提供了潜在的克隆进化。在这里,我们描述了如何将一种新的统计模型应用于转移性乳腺癌患者的浅全基因组测序(sWGS)的连续ctDNA测量,从而对治疗反应和无进展生存期进行快速而廉价的预测评估。149例患者从一系列血浆样本中提取DNA(共1013例,平均每个患者= 6.80例)。使用sWGS评估血浆DNA,使用ichorCNA评估肿瘤在总游离DNA中的比例。该方法与ctDNA靶向测序和CA15-3序列测定进行了比较。我们使用ichorCNA估计值和时间依赖的Cox比例风险模型确定了7%的转移点,将患者分为不同的进展风险类别,并在不同的乳腺癌亚型和治疗中进行了验证,优于其他方法。我们使用纵向ichorCNA值建立贝叶斯学习模型,以0.75的灵敏度和0.66的特异性预测后续治疗反应。在转移性乳腺癌患者中,ctDNA的sWGS策略与肿瘤部分的纵向跟踪提供了治疗反应的实时信息。这些结果鼓励进行前瞻性的大规模临床试验,以评估基于ctDNA水平的早期治疗改变的临床益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信