{"title":"[Regulation of myeloid-derived suppressor cells by glutamate].","authors":"Masashi Tachibana","doi":"10.1254/fpj.25009","DOIUrl":null,"url":null,"abstract":"<p><p>Myeloid-derived suppressor cells (MDSCs) suppress anti-tumor immunity in tumor bearers, which leads to tumor progression. Immune checkpoint blockers (ICBs) demonstrated significant efficiency against various cancers; however, their success rate is limited to approximately 20-30% in patients with cancer. To address this limitation, predictive biomarkers and combination therapies are required. Since MDSCs are supposed to be crucial for the resistance to ICBs, targeting MDSCs could be a promising approach for cancer immunotherapy. Granulocyte colony-stimulating factor (G-CSF), widely used as prophylaxis and therapy for febrile neutropenia (FN), has been shown to significantly reduce its incidence. However, G-CSF has been reported to promote tumor progression caused by the enhancing the proliferation of MDSCs. We found that G-CSF enhances the immunosuppressive activity of MDSCs through the upregulation of γ-glutamyltransferase 1 (GGT1). GGT1, an enzyme hydrolyzing extracellular glutathione, is reported to be a marker for early-stage cancers and promote tumor progression. It is suggested that GGT1 increases glutamate levels through glutathione hydrolysis and that metabotropic glutamate receptor signaling enhances the immunosuppressive activity of MDSCs. Moreover, in FN mouse models, we observed that G-CSF promoted tumor progression, while the inhibition of GGT abolished. Together, the inhibition of GGT can mitigate the tumor-promoting effects of MDSCs without compromising the beneficial effect of G-CSF. These insights should lead to the safer and more effective cancer immunotherapy.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"158-162"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.25009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloid-derived suppressor cells (MDSCs) suppress anti-tumor immunity in tumor bearers, which leads to tumor progression. Immune checkpoint blockers (ICBs) demonstrated significant efficiency against various cancers; however, their success rate is limited to approximately 20-30% in patients with cancer. To address this limitation, predictive biomarkers and combination therapies are required. Since MDSCs are supposed to be crucial for the resistance to ICBs, targeting MDSCs could be a promising approach for cancer immunotherapy. Granulocyte colony-stimulating factor (G-CSF), widely used as prophylaxis and therapy for febrile neutropenia (FN), has been shown to significantly reduce its incidence. However, G-CSF has been reported to promote tumor progression caused by the enhancing the proliferation of MDSCs. We found that G-CSF enhances the immunosuppressive activity of MDSCs through the upregulation of γ-glutamyltransferase 1 (GGT1). GGT1, an enzyme hydrolyzing extracellular glutathione, is reported to be a marker for early-stage cancers and promote tumor progression. It is suggested that GGT1 increases glutamate levels through glutathione hydrolysis and that metabotropic glutamate receptor signaling enhances the immunosuppressive activity of MDSCs. Moreover, in FN mouse models, we observed that G-CSF promoted tumor progression, while the inhibition of GGT abolished. Together, the inhibition of GGT can mitigate the tumor-promoting effects of MDSCs without compromising the beneficial effect of G-CSF. These insights should lead to the safer and more effective cancer immunotherapy.